1 code implementation • 18 Oct 2024 • Runchu Tian, Yanghao Li, Yuepeng Fu, Siyang Deng, Qinyu Luo, Cheng Qian, Shuo Wang, Xin Cong, Zhong Zhang, Yesai Wu, Yankai Lin, Huadong Wang, Xiaojiang Liu
These experiments reveal that while most current models are robust against the "lost in the middle" issue, there exist significant biases related to the spacing of relevant information pieces.
1 code implementation • 9 Jan 2024 • Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu, Haotian Hui, Weichuan Liu, Zhiyuan Liu, Maosong Sun
Previous evaluations of LLMs' debugging ability are significantly limited by the risk of data leakage, the scale of the dataset, and the variety of tested bugs.
2 code implementations • 31 Jul 2023 • Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, Maosong Sun
Based on ToolBench, we fine-tune LLaMA to obtain an LLM ToolLLaMA, and equip it with a neural API retriever to recommend appropriate APIs for each instruction.
Ranked #3 on
Trajectory Planning
on ToolBench
1 code implementation • 28 Jul 2023 • Shihao Liang, Runchu Tian, Kunlun Zhu, Yujia Qin, Huadong Wang, Xin Cong, Zhiyuan Liu, Xiaojiang Liu, Maosong Sun
Instruction tuning has emerged as a promising approach to enhancing large language models in following human instructions.
3 code implementations • 17 Apr 2023 • Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, Maosong Sun
Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 18 representative tools and show the potential of current foundation models in skillfully utilizing tools.