no code implementations • 12 Jan 2023 • Ruoxi Sun, Chun-Liang Li, Sercan O. Arik, Michael W. Dusenberry, Chen-Yu Lee, Tomas Pfister
Accurate estimation of output quantiles is crucial in many use cases, where it is desired to model the range of possibility.
1 code implementation • 23 Sep 2022 • Wanlun Ma, Derui Wang, Ruoxi Sun, Minhui Xue, Sheng Wen, Yang Xiang
However, recent advanced backdoor attacks show that this assumption is no longer valid in dynamic backdoors where the triggers vary from input to input, thereby defeating the existing defenses.
1 code implementation • 15 Sep 2022 • Pingyi Hu, Zihan Wang, Ruoxi Sun, Hu Wang, Minhui Xue
To achieve this, we propose Multi-modal Models Membership Inference (M^4I) with two attack methods to infer the membership status, named metric-based (MB) M^4I and feature-based (FB) M^4I, respectively.
no code implementations • 13 Jul 2022 • Ruoxi Sun, Hanjun Dai, Adams Wei Yu
Extracting informative representations of molecules using Graph neural networks (GNNs) is crucial in AI-driven drug discovery.
2 code implementations • 10 Apr 2022 • Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, Tomas Pfister
Continual learning aims to enable a single model to learn a sequence of tasks without catastrophic forgetting.
1 code implementation • 30 Mar 2022 • Yuxin Cao, Xi Xiao, Ruoxi Sun, Derui Wang, Minhui Xue, Sheng Wen
In this paper, we focus on unrestricted perturbations and propose StyleFool, a black-box video adversarial attack via style transfer to fool the video classification system.
no code implementations • 21 Mar 2022 • Shuo Wang, Sharif Abuadbba, Sidharth Agarwal, Kristen Moore, Ruoxi Sun, Minhui Xue, Surya Nepal, Seyit Camtepe, Salil Kanhere
Existing integrity verification approaches for deep models are designed for private verification (i. e., assuming the service provider is honest, with white-box access to model parameters).
1 code implementation • CVPR 2022 • Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, Tomas Pfister
The mainstream paradigm behind continual learning has been to adapt the model parameters to non-stationary data distributions, where catastrophic forgetting is the central challenge.
no code implementations • NeurIPS 2021 • Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, Bo Dai
In this paper, we propose a framework that unifies sequence- and graph-based methods as energy-based models (EBMs) with different energy functions.
no code implementations • 19 Nov 2021 • Ruoxi Sun, Wei Wang, Tian Dong, Shaofeng Li, Minhui Xue, Gareth Tyson, Haojin Zhu, Mingyu Guo, Surya Nepal
We find that (i) commercial antivirus engines are vulnerable to AMM-guided manipulated samples; (ii) the ability of a manipulated malware generated using one detector to evade detection by another detector (i. e., transferability) depends on the overlap of features with large AMM values between the different detectors; and (iii) AMM values effectively measure the importance of features and explain the ability to evade detection.
no code implementations • 20 Jul 2021 • Zihan Wang, Olivia Byrnes, Hu Wang, Ruoxi Sun, Congbo Ma, Huaming Chen, Qi Wu, Minhui Xue
Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or an image, including Digital Watermarking for robust identity verification and Steganography to embed data for the purpose of secure and secret communication.
1 code implementation • 1 Jan 2021 • Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C. Daniel Freeman, Ben Poole, Jascha Sohl-Dickstein
We present TaskSet, a dataset of tasks for use in training and evaluating optimizers.
no code implementations • NeurIPS 2021 • Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi Sun, Jascha Sohl-Dickstein
Learned optimizers are algorithms that can themselves be trained to solve optimization problems.
1 code implementation • 17 Sep 2020 • Li Li, Stephan Hoyer, Ryan Pederson, Ruoxi Sun, Ekin D. Cubuk, Patrick Riley, Kieron Burke
Including prior knowledge is important for effective machine learning models in physics, and is usually achieved by explicitly adding loss terms or constraints on model architectures.
no code implementations • 14 Jul 2020 • Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, Bo Dai
Retrosynthesis -- the process of identifying a set of reactants to synthesize a target molecule -- is of vital importance to material design and drug discovery.
Ranked #1 on
Single-step retrosynthesis
on USPTO-50k
no code implementations • 27 Feb 2020 • Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C. Daniel Freeman, Ben Poole, Jascha Sohl-Dickstein
We present TaskSet, a dataset of tasks for use in training and evaluating optimizers.
no code implementations • NeurIPS 2019 • Ruoxi Sun, Ian Kinsella, Scott Linderman, Liam Paninski
However, current sensors and imaging approaches still face significant limitations in SNR and sampling frequency; therefore statistical denoising and interpolation methods remain critical for understanding single-trial spatiotemporal dendritic voltage dynamics.
1 code implementation • ICML 2018 • Ruoxi Sun, Liam Paninski
This approach is therefore highly flexible and improves on the state of the art in terms of accuracy; provides uncertainty estimates about the particle locations and identities; and has a test run-time that scales linearly as a function of the data length and number of particles, thus enabling Bayesian inference in arbitrarily large particle tracking datasets.