no code implementations • 24 Sep 2024 • Nathaniel Hudson, Valerie Hayot-Sasson, Yadu Babuji, Matt Baughman, J. Gregory Pauloski, Ryan Chard, Ian Foster, Kyle Chard
Federated Learning (FL) is a decentralized machine learning paradigm where models are trained on distributed devices and are aggregated at a central server.
no code implementations • 26 Aug 2024 • Logan Ward, J. Gregory Pauloski, Valerie Hayot-Sasson, Yadu Babuji, Alexander Brace, Ryan Chard, Kyle Chard, Rajeev Thakur, Ian Foster
Computational workflows are a common class of application on supercomputers, yet the loosely coupled and heterogeneous nature of workflows often fails to take full advantage of their capabilities.
no code implementations • 5 Feb 2024 • Nathaniel Hudson, J. Gregory Pauloski, Matt Baughman, Alok Kamatar, Mansi Sakarvadia, Logan Ward, Ryan Chard, André Bauer, Maksim Levental, Wenyi Wang, Will Engler, Owen Price Skelly, Ben Blaiszik, Rick Stevens, Kyle Chard, Ian Foster
Deep learning methods are transforming research, enabling new techniques, and ultimately leading to new discoveries.
no code implementations • 25 Aug 2023 • Alexander Brace, Rafael Vescovi, Ryan Chard, Nickolaus D. Saint, Arvind Ramanathan, Nestor J. Zaluzec, Ian Foster
The Dynamic PicoProbe at Argonne National Laboratory is undergoing upgrades that will enable it to produce up to 100s of GB of data per day.
1 code implementation • 17 Aug 2023 • Zilinghan Li, Shilan He, Pranshu Chaturvedi, Trung-Hieu Hoang, Minseok Ryu, E. A. Huerta, Volodymyr Kindratenko, Jordan Fuhrman, Maryellen Giger, Ryan Chard, Kibaek Kim, Ravi Madduri
Cross-silo privacy-preserving federated learning (PPFL) is a powerful tool to collaboratively train robust and generalized machine learning (ML) models without sharing sensitive (e. g., healthcare of financial) local data.
no code implementations • 9 Apr 2023 • Anakha V Babu, Tekin Bicer, Saugat Kandel, Tao Zhou, Daniel J. Ching, Steven Henke, Siniša Veseli, Ryan Chard, Antonino Miceli, Mathew Joseph Cherukara
We present an end-to-end automated workflow that uses large-scale remote compute resources and an embedded GPU platform at the edge to enable AI/ML-accelerated real-time analysis of data collected for x-ray ptychography.
2 code implementations • 15 Mar 2023 • Logan Ward, J. Gregory Pauloski, Valerie Hayot-Sasson, Ryan Chard, Yadu Babuji, Ganesh Sivaraman, Sutanay Choudhury, Kyle Chard, Rajeev Thakur, Ian Foster
Applications that fuse machine learning and simulation can benefit from the use of multiple computing resources, with, for example, simulation codes running on highly parallel supercomputers and AI training and inference tasks on specialized accelerators.
no code implementations • 13 Feb 2023 • Maksim Levental, Arham Khan, Ryan Chard, Kazutomo Yoshii, Kyle Chard, Ian Foster
In many experiment-driven scientific domains, such as high-energy physics, material science, and cosmology, high data rate experiments impose hard constraints on data acquisition systems: collected data must either be indiscriminately stored for post-processing and analysis, thereby necessitating large storage capacity, or accurately filtered in real-time, thereby necessitating low-latency processing.
no code implementations • 20 Sep 2022 • Anakha V Babu, Tao Zhou, Saugat Kandel, Tekin Bicer, Zhengchun Liu, William Judge, Daniel J. Ching, Yi Jiang, Sinisa Veseli, Steven Henke, Ryan Chard, YuDong Yao, Ekaterina Sirazitdinova, Geetika Gupta, Martin V. Holt, Ian T. Foster, Antonino Miceli, Mathew J. Cherukara
Coherent microscopy techniques provide an unparalleled multi-scale view of materials across scientific and technological fields, from structural materials to quantum devices, from integrated circuits to biological cells.
no code implementations • 19 Aug 2022 • Ryan Chard, Jim Pruyne, Kurt McKee, Josh Bryan, Brigitte Raumann, Rachana Ananthakrishnan, Kyle Chard, Ian Foster
We report here on new services within the Globus research data management platform that enable the specification of diverse research processes as reusable sets of actions, \emph{flows}, and the execution of such flows in heterogeneous research environments.
1 code implementation • 1 Jul 2022 • Nikil Ravi, Pranshu Chaturvedi, E. A. Huerta, Zhengchun Liu, Ryan Chard, Aristana Scourtas, K. J. Schmidt, Kyle Chard, Ben Blaiszik, Ian Foster
A concise and measurable set of FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific data is transforming the state-of-practice for data management and stewardship, supporting and enabling discovery and innovation.
1 code implementation • 6 Oct 2021 • Logan Ward, Ganesh Sivaraman, J. Gregory Pauloski, Yadu Babuji, Ryan Chard, Naveen Dandu, Paul C. Redfern, Rajeev S. Assary, Kyle Chard, Larry A. Curtiss, Rajeev Thakur, Ian Foster
Scientific applications that involve simulation ensembles can be accelerated greatly by using experiment design methods to select the best simulations to perform.
no code implementations • 26 Aug 2021 • Maksim Levental, Ryan Chard, Kyle Chard, Ian Foster, Gregg A. Wildenberg
Technological advancements in modern scientific instruments, such as scanning electron microscopes (SEMs), have significantly increased data acquisition rates and image resolutions enabling new questions to be explored; however, the resulting data volumes and velocities, combined with automated experiments, are quickly overwhelming scientists as there remain crucial steps that require human intervention, for example reviewing image focus.
no code implementations • 15 Dec 2020 • E. A. Huerta, Asad Khan, Xiaobo Huang, Minyang Tian, Maksim Levental, Ryan Chard, Wei Wei, Maeve Heflin, Daniel S. Katz, Volodymyr Kindratenko, Dawei Mu, Ben Blaiszik, Ian Foster
The development of reusable artificial intelligence (AI) models for wider use and rigorous validation by the community promises to unlock new opportunities in multi-messenger astrophysics.
1 code implementation • 16 Oct 2020 • Maksim Levental, Ryan Chard, Joseph A. Libera, Kyle Chard, Aarthi Koripelly, Jakob R. Elias, Marcus Schwarting, Ben Blaiszik, Marius Stan, Santanu Chaudhuri, Ian Foster
Flame Spray Pyrolysis (FSP) is a manufacturing technique to mass produce engineered nanoparticles for applications in catalysis, energy materials, composites, and more.
1 code implementation • 28 May 2020 • Yadu Babuji, Ben Blaiszik, Tom Brettin, Kyle Chard, Ryan Chard, Austin Clyde, Ian Foster, Zhi Hong, Shantenu Jha, Zhuozhao Li, Xuefeng Liu, Arvind Ramanathan, Yi Ren, Nicholaus Saint, Marcus Schwarting, Rick Stevens, Hubertus van Dam, Rick Wagner
Researchers across the globe are seeking to rapidly repurpose existing drugs or discover new drugs to counter the the novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
no code implementations • 7 May 2020 • Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben Blaiszik, Ian Foster, Kyle Chard
These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e. g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available.
Distributed, Parallel, and Cluster Computing
no code implementations • 27 Nov 2018 • Ryan Chard, Zhuozhao Li, Kyle Chard, Logan Ward, Yadu Babuji, Anna Woodard, Steve Tuecke, Ben Blaiszik, Michael J. Franklin, Ian Foster
Here we present the Data and Learning Hub for science (DLHub), a multi-tenant system that provides both model repository and serving capabilities with a focus on science applications.