no code implementations • 18 Jan 2023 • Megan M. Baker, Alexander New, Mario Aguilar-Simon, Ziad Al-Halah, Sébastien M. R. Arnold, Ese Ben-Iwhiwhu, Andrew P. Brna, Ethan Brooks, Ryan C. Brown, Zachary Daniels, Anurag Daram, Fabien Delattre, Ryan Dellana, Eric Eaton, Haotian Fu, Kristen Grauman, Jesse Hostetler, Shariq Iqbal, Cassandra Kent, Nicholas Ketz, Soheil Kolouri, George Konidaris, Dhireesha Kudithipudi, Erik Learned-Miller, Seungwon Lee, Michael L. Littman, Sandeep Madireddy, Jorge A. Mendez, Eric Q. Nguyen, Christine D. Piatko, Praveen K. Pilly, Aswin Raghavan, Abrar Rahman, Santhosh Kumar Ramakrishnan, Neale Ratzlaff, Andrea Soltoggio, Peter Stone, Indranil Sur, Zhipeng Tang, Saket Tiwari, Kyle Vedder, Felix Wang, Zifan Xu, Angel Yanguas-Gil, Harel Yedidsion, Shangqun Yu, Gautam K. Vallabha
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed.
no code implementations • 21 Apr 2020 • Maryam Parsa, Catherine D. Schuman, Prasanna Date, Derek C. Rose, Bill Kay, J. Parker Mitchell, Steven R. Young, Ryan Dellana, William Severa, Thomas E. Potok, Kaushik Roy
In this work, we introduce a Bayesian approach for optimizing the hyperparameters of an algorithm for training binary communication networks that can be deployed to neuromorphic hardware.
no code implementations • 2 Apr 2020 • Christopher H. Bennett, T. Patrick Xiao, Ryan Dellana, Vineet Agrawal, Ben Feinberg, Venkatraman Prabhakar, Krishnaswamy Ramkumar, Long Hinh, Swatilekha Saha, Vijay Raghavan, Ramesh Chettuvetty, Sapan Agarwal, Matthew J. Marinella
Non-volatile memory arrays can deploy pre-trained neural network models for edge inference.
no code implementations • 25 Feb 2020 • Christopher H. Bennett, Ryan Dellana, T. Patrick Xiao, Ben Feinberg, Sapan Agarwal, Suma Cardwell, Matthew J. Marinella, William Severa, Brad Aimone
Neuromorphic-style inference only works well if limited hardware resources are maximized properly, e. g. accuracy continues to scale with parameters and complexity in the face of potential disturbance.
no code implementations • 26 Oct 2018 • William Severa, Craig M. Vineyard, Ryan Dellana, Stephen J. Verzi, James B. Aimone
We present a method for training deep spiking neural networks using an iterative modification of the backpropagation optimization algorithm.