no code implementations • 27 Mar 2024 • Oliver Klingefjord, Ryan Lowe, Joe Edelman
In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models?
10 code implementations • Preprint 2023 • OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, Barret Zoph
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs.
Ranked #1 on Legal Reasoning on LegalBench (Rule-recall)
9 code implementations • 4 Mar 2022 • Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe
In this paper, we show an avenue for aligning language models with user intent on a wide range of tasks by fine-tuning with human feedback.
no code implementations • 22 Sep 2021 • Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, Paul Christiano
Our human labelers are able to supervise and evaluate the models quickly, despite not having read the entire books themselves.
1 code implementation • NeurIPS 2020 • Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, Paul F. Christiano
We collect a large, high-quality dataset of human comparisons between summaries, train a model to predict the human-preferred summary, and use that model as a reward function to fine-tune a summarization policy using reinforcement learning.
2 code implementations • 2 Sep 2020 • Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, Paul Christiano
We collect a large, high-quality dataset of human comparisons between summaries, train a model to predict the human-preferred summary, and use that model as a reward function to fine-tune a summarization policy using reinforcement learning.
no code implementations • 21 Jul 2020 • Shagun Sodhani, Mayoore S. Jaiswal, Lauren Baker, Koustuv Sinha, Carl Shneider, Peter Henderson, Joel Lehman, Ryan Lowe
This report documents ideas for improving the field of machine learning, which arose from discussions at the ML Retrospectives workshop at NeurIPS 2019.
1 code implementation • ACL 2020 • Koustuv Sinha, Prasanna Parthasarathi, Jasmine Wang, Ryan Lowe, William L. Hamilton, Joelle Pineau
Evaluating the quality of a dialogue interaction between two agents is a difficult task, especially in open-domain chit-chat style dialogue.
1 code implementation • ICLR 2020 • Ryan Lowe, Abhinav Gupta, Jakob Foerster, Douwe Kiela, Joelle Pineau
A promising approach for teaching artificial agents to use natural language involves using human-in-the-loop training.
no code implementations • WS 2019 • Abhinav Gupta, Ryan Lowe, Jakob Foerster, Douwe Kiela, Joelle Pineau
Once the meta-learning agent is able to quickly adapt to each population of agents, it can be deployed in new populations, including populations speaking human language.
1 code implementation • 12 Mar 2019 • Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, Yann Dauphin
How do we know if communication is emerging in a multi-agent system?
2 code implementations • 31 Jan 2019 • Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W. black, Alexander Rudnicky, Jason Williams, Joelle Pineau, Mikhail Burtsev, Jason Weston
We describe the setting and results of the ConvAI2 NeurIPS competition that aims to further the state-of-the-art in open-domain chatbots.
1 code implementation • 24 Nov 2017 • Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, Joelle Pineau
The use of dialogue systems as a medium for human-machine interaction is an increasingly prevalent paradigm.
no code implementations • EMNLP 2017 • Teng Long, Emmanuel Bengio, Ryan Lowe, Jackie Chi Kit Cheung, Doina Precup
Humans interpret texts with respect to some background information, or world knowledge, and we would like to develop automatic reading comprehension systems that can do the same.
1 code implementation • ACL 2017 • Ryan Lowe, Michael Noseworthy, Iulian V. Serban, Nicolas Angelard-Gontier, Yoshua Bengio, Joelle Pineau
Automatically evaluating the quality of dialogue responses for unstructured domains is a challenging problem.
84 code implementations • NeurIPS 2017 • Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, Igor Mordatch
We explore deep reinforcement learning methods for multi-agent domains.
Ranked #1 on SMAC+ on Def_Infantry_sequential
no code implementations • 1 Jan 2017 • Ryan Lowe, Nissan Pow, Iulian Vlad Serban, Laurent Charlin, Chia-Wei Liu, Joelle Pineau
In this paper, we analyze neural network-based dialogue systems trained in an end-to-end manner using an updated version of the recent Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words.
no code implementations • 18 Nov 2016 • Iulian Vlad Serban, Ryan Lowe, Laurent Charlin, Joelle Pineau
Researchers have recently started investigating deep neural networks for dialogue applications.
3 code implementations • 24 Jul 2016 • Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, Yoshua Bengio
We present an approach to training neural networks to generate sequences using actor-critic methods from reinforcement learning (RL).
Ranked #8 on Machine Translation on IWSLT2015 English-German
9 code implementations • 19 May 2016 • Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron Courville, Yoshua Bengio
Sequential data often possesses a hierarchical structure with complex dependencies between subsequences, such as found between the utterances in a dialogue.
no code implementations • WS 2016 • Ryan Lowe, Iulian V. Serban, Mike Noseworthy, Laurent Charlin, Joelle Pineau
An open challenge in constructing dialogue systems is developing methods for automatically learning dialogue strategies from large amounts of unlabelled data.
no code implementations • ACL 2016 • Teng Long, Ryan Lowe, Jackie Chi Kit Cheung, Doina Precup
Recent work in learning vector-space embeddings for multi-relational data has focused on combining relational information derived from knowledge bases with distributional information derived from large text corpora.
2 code implementations • EMNLP 2016 • Chia-Wei Liu, Ryan Lowe, Iulian V. Serban, Michael Noseworthy, Laurent Charlin, Joelle Pineau
We investigate evaluation metrics for dialogue response generation systems where supervised labels, such as task completion, are not available.
4 code implementations • 17 Dec 2015 • Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, Joelle Pineau
During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models.
21 code implementations • WS 2015 • Ryan Lowe, Nissan Pow, Iulian Serban, Joelle Pineau
This paper introduces the Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words.