Search Results for author: Ryoichi Ishikawa

Found 7 papers, 2 papers with code

Non-learning Stereo-aided Depth Completion under Mis-projection via Selective Stereo Matching

no code implementations4 Oct 2022 Yasuhiro Yao, Ryoichi Ishikawa, Shingo Ando, Kana Kurata, Naoki Ito, Jun Shimamura, Takeshi Oishi

Moreover, under various LiDAR-camera calibration errors, the proposed method reduced the depth estimation MAE to 0. 34-0. 93 times from previous depth completion methods.

Camera Calibration Depth Completion +2

Learning 6DoF Grasping Using Reward-Consistent Demonstration

no code implementations23 Mar 2021 Daichi Kawakami, Ryoichi Ishikawa, Menandro Roxas, Yoshihiro Sato, Takeshi Oishi

As the number of the robot's degrees of freedom increases, the implementation of robot motion becomes more complex and difficult.

Imitation Learning reinforcement-learning

Discontinuous and Smooth Depth Completion with Binary Anisotropic Diffusion Tensor

no code implementations25 Jun 2020 Yasuhiro Yao, Menandro Roxas, Ryoichi Ishikawa, Shingo Ando, Jun Shimamura, Takeshi Oishi

Our experiments show that our method can outperform previous unsupervised and semi-supervised depth completion methods in terms of accuracy.

Depth Completion

A Hand Motion-guided Articulation and Segmentation Estimation

1 code implementation7 May 2020 Richard Sahala Hartanto, Ryoichi Ishikawa, Menandro Roxas, Takeshi Oishi

In this paper, we present a method for simultaneous articulation model estimation and segmentation of an articulated object in RGB-D images using human hand motion.

Offline and Online calibration of Mobile Robot and SLAM Device for Navigation

1 code implementation13 Apr 2018 Ryoichi Ishikawa, Takeshi Oishi, Katsushi Ikeuchi

In the experiments, we confirm the parameters obtained by two types of offline calibration according to the degree of freedom of robot movement and validate the effectiveness of online correction method by plotting localized position error during robot's intense movement.

Mixed Reality Robot Navigation

Cannot find the paper you are looking for? You can Submit a new open access paper.