Search Results for author: S Kevin Zhou

Found 8 papers, 4 papers with code

Identify Critical KV Cache in LLM Inference from an Output Perturbation Perspective

1 code implementation6 Feb 2025 Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, S Kevin Zhou

This paper presents a formal study on identifying critical KV cache entries by analyzing attention output perturbation.

FRAG: A Flexible Modular Framework for Retrieval-Augmented Generation based on Knowledge Graphs

no code implementations17 Jan 2025 Zengyi Gao, Yukun Cao, Hairu Wang, Ao Ke, Yuan Feng, Xike Xie, S Kevin Zhou

By using the query text instead of the KG to infer the structural information of reasoning paths and employing adaptable retrieval strategies, FRAG improves retrieval quality while maintaining flexibility.

Hallucination Knowledge Graphs +2

LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation

no code implementations14 Sep 2024 Qiyuan Wang, Shang Zhao, Zikang Xu, S Kevin Zhou

In this work, we propose a novel LACOSTE model that exploits Location-Agnostic COntexts in Stereo and TEmporal images for improved surgical instrument segmentation.

Instance Segmentation Segmentation +1

Long-tailed multi-label classification with noisy label of thoracic diseases from chest X-ray

1 code implementation29 Nov 2023 Haoran Lai, Qingsong Yao, ZhiYang He, Xiaodong Tao, S Kevin Zhou

This work establishes a foundation for robust CAD methods, achieving a balance in identifying a spectrum of thoracic diseases in CXRs.

Multi-Label Classification MUlTI-LABEL-ClASSIFICATION

FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

no code implementations11 Aug 2023 Karim Lekadir, Aasa Feragen, Abdul Joseph Fofanah, Alejandro F Frangi, Alena Buyx, Anais Emelie, Andrea Lara, Antonio R Porras, An-Wen Chan, Arcadi Navarro, Ben Glocker, Benard O Botwe, Bishesh Khanal, Brigit Beger, Carol C Wu, Celia Cintas, Curtis P Langlotz, Daniel Rueckert, Deogratias Mzurikwao, Dimitrios I Fotiadis, Doszhan Zhussupov, Enzo Ferrante, Erik Meijering, Eva Weicken, Fabio A González, Folkert W Asselbergs, Fred Prior, Gabriel P Krestin, Gary Collins, Geletaw S Tegenaw, Georgios Kaissis, Gianluca Misuraca, Gianna Tsakou, Girish Dwivedi, Haridimos Kondylakis, Harsha Jayakody, Henry C Woodruf, Horst Joachim Mayer, Hugo JWL Aerts, Ian Walsh, Ioanna Chouvarda, Irène Buvat, Isabell Tributsch, Islem Rekik, James Duncan, Jayashree Kalpathy-Cramer, Jihad Zahir, Jinah Park, John Mongan, Judy W Gichoya, Julia A Schnabel, Kaisar Kushibar, Katrine Riklund, Kensaku MORI, Kostas Marias, Lameck M Amugongo, Lauren A Fromont, Lena Maier-Hein, Leonor Cerdá Alberich, Leticia Rittner, Lighton Phiri, Linda Marrakchi-Kacem, Lluís Donoso-Bach, Luis Martí-Bonmatí, M Jorge Cardoso, Maciej Bobowicz, Mahsa Shabani, Manolis Tsiknakis, Maria A Zuluaga, Maria Bielikova, Marie-Christine Fritzsche, Marina Camacho, Marius George Linguraru, Markus Wenzel, Marleen de Bruijne, Martin G Tolsgaard, Marzyeh Ghassemi, Md Ashrafuzzaman, Melanie Goisauf, Mohammad Yaqub, Mónica Cano Abadía, Mukhtar M E Mahmoud, Mustafa Elattar, Nicola Rieke, Nikolaos Papanikolaou, Noussair Lazrak, Oliver Díaz, Olivier Salvado, Oriol Pujol, Ousmane Sall, Pamela Guevara, Peter Gordebeke, Philippe Lambin, Pieta Brown, Purang Abolmaesumi, Qi Dou, Qinghua Lu, Richard Osuala, Rose Nakasi, S Kevin Zhou, Sandy Napel, Sara Colantonio, Shadi Albarqouni, Smriti Joshi, Stacy Carter, Stefan Klein, Steffen E Petersen, Susanna Aussó, Suyash Awate, Tammy Riklin Raviv, Tessa Cook, Tinashe E M Mutsvangwa, Wendy A Rogers, Wiro J Niessen, Xènia Puig-Bosch, Yi Zeng, Yunusa G Mohammed, Yves Saint James Aquino, Zohaib Salahuddin, Martijn P A Starmans

This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.

Fairness

Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective

1 code implementation NeurIPS 2023 Chenyu You, Weicheng Dai, Yifei Min, Fenglin Liu, David A. Clifton, S Kevin Zhou, Lawrence Hamilton Staib, James S Duncan

For medical image segmentation, contrastive learning is the dominant practice to improve the quality of visual representations by contrasting semantically similar and dissimilar pairs of samples.

Contrastive Learning Image Segmentation +3

BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse Bounding Box Annotations

1 code implementation7 Dec 2022 Jun Wei, Yiwen Hu, Guanbin Li, Shuguang Cui, S Kevin Zhou, Zhen Li

In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models, which generate fine-grained polyp area through the iterative boosted segmentation model.

Segmentation

3D endoscopic depth estimation using 3D surface-aware constraints

no code implementations4 Mar 2022 Shang Zhao, Ce Wang, Qiyuan Wang, Yanzhe Liu, S Kevin Zhou

We propose a loss function for depth estimation that integrates the surface-aware constraints, leading to a faster and better convergence with the valid information from spatial information.

Depth Estimation Image Reconstruction +1

Cannot find the paper you are looking for? You can Submit a new open access paper.