1 code implementation • 5 Jan 2025 • Yuliang Guo, Sparsh Garg, S. Mahdi H. Miangoleh, Xinyu Huang, Liu Ren
DAC achieves state-of-the-art zero-shot metric depth estimation, improving $\delta_1$ accuracy by up to 50% on multiple fisheye and 360-degree datasets compared to prior metric depth foundation models, demonstrating robust generalization across camera types.
1 code implementation • 13 Jun 2024 • S. Mahdi H. Miangoleh, Mahesh Reddy, Yağız Aksoy
Existing methods for scale-invariant monocular depth estimation (SI MDE) often struggle due to the complexity of the task, and limited and non-diverse datasets, hindering generalizability in real-world scenarios.
1 code implementation • 6 Dec 2023 • Chris Careaga, S. Mahdi H. Miangoleh, Yağız Aksoy
Despite significant advancements in network-based image harmonization techniques, there still exists a domain disparity between typical training pairs and real-world composites encountered during inference.
1 code implementation • CVPR 2023 • S. Mahdi H. Miangoleh, Zoya Bylinskii, Eric Kee, Eli Shechtman, Yağız Aksoy
We thus offer a viable solution for automating image enhancement and photo cleanup operations.
1 code implementation • CVPR 2021 • S. Mahdi H. Miangoleh, Sebastian Dille, Long Mai, Sylvain Paris, Yağız Aksoy
Neural networks have shown great abilities in estimating depth from a single image.
Ranked #1 on
Monocular Depth Estimation
on IBims-1