1 code implementation • 10 Dec 2020 • S. Mucesh, W. G. Hartley, A. Palmese, O. Lahav, L. Whiteway, A. F. L. Bluck, A. Alarcon, A. Amon, K. Bechtol, G. M. Bernstein, A. Carnero Rosell, M. Carrasco Kind, A. Choi, K. Eckert, S. Everett, D. Gruen, R. A. Gruendl, I. Harrison, E. M. Huff, N. Kuropatkin, I. Sevilla-Noarbe, E. Sheldon, B. Yanny, M. Aguena, S. Allam, D. Bacon, E. Bertin, S. Bhargava, D. Brooks, J. Carretero, F. J. Castander, C. Conselice, M. Costanzi, M. Crocce, L. N. da Costa, M. E. S. Pereira, J. De Vicente, S. Desai, H. T. Diehl, A. Drlica-Wagner, A. E. Evrard, I. Ferrero, B. Flaugher, P. Fosalba, J. Frieman, J. García-Bellido, E. Gaztanaga, D. W. Gerdes, J. Gschwend, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, M. Lima, H. Lin, M. A. G. Maia, P. Melchior, F. Menanteau, R. Miquel, R. Morgan, F. Paz-Chinchón, A. A. Plazas, E. Sanchez, V. Scarpine, M. Schubnell, S. Serrano, M. Smith, E. Suchyta, G. Tarle, D. Thomas, C. To, T. N. Varga, R. D. Wilkinson
We demonstrate that highly accurate joint redshift-stellar mass probability distribution functions (PDFs) can be obtained using the Random Forest (RF) machine learning (ML) algorithm, even with few photometric bands available.