no code implementations • 19 Jul 2023 • A. Herle, C. M. O'Riordan, S. Vegetti
An understanding of the selection function of lens finding neural networks will be key to fully realising the potential of the large samples of strong gravitational lens systems that will be found in upcoming wide-field surveys.
no code implementations • 15 Jun 2020 • X. Ding, T. Treu, S. Birrer, G. C. -F. Chen, J. Coles, P. Denzel, M. Frigo A. Galan, P. J. Marshall, M. Millon, A. More, A. J. Shajib, D. Sluse, H. Tak, D. Xu, M. W. Auger, V. Bonvin, H. Chand, F. Courbin, G. Despali, C. D. Fassnacht, D. Gilman, S. Hilbert, S. R. Kumar, Y. -Y. Lin, J. W. Park, P. Saha, S. Vegetti, L. Van de Vyvere, L. L. R. Williams
With this time delay lens modelling challenge we aim to assess the level of precision and accuracy of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysis of simulated datasets.
Cosmology and Nongalactic Astrophysics Astrophysics of Galaxies Instrumentation and Methods for Astrophysics
no code implementations • 2 May 2008 • S. Vegetti, L. V. E. Koopmans
In addition, we implement a Nested-Sampling technique to quantify the errors on all non-linear mass model parameters -- ... -- and allow an objective ranking of different potential models in terms of the marginalized evidence.