Search Results for author: S. Vegetti

Found 3 papers, 0 papers with code

Selection functions of strong lens finding neural networks

no code implementations19 Jul 2023 A. Herle, C. M. O'Riordan, S. Vegetti

An understanding of the selection function of lens finding neural networks will be key to fully realising the potential of the large samples of strong gravitational lens systems that will be found in upcoming wide-field surveys.

Time Delay Lens Modelling Challenge

no code implementations15 Jun 2020 X. Ding, T. Treu, S. Birrer, G. C. -F. Chen, J. Coles, P. Denzel, M. Frigo A. Galan, P. J. Marshall, M. Millon, A. More, A. J. Shajib, D. Sluse, H. Tak, D. Xu, M. W. Auger, V. Bonvin, H. Chand, F. Courbin, G. Despali, C. D. Fassnacht, D. Gilman, S. Hilbert, S. R. Kumar, Y. -Y. Lin, J. W. Park, P. Saha, S. Vegetti, L. Van de Vyvere, L. L. R. Williams

With this time delay lens modelling challenge we aim to assess the level of precision and accuracy of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysis of simulated datasets.

Cosmology and Nongalactic Astrophysics Astrophysics of Galaxies Instrumentation and Methods for Astrophysics

Bayesian Strong Gravitational-Lens Modeling on Adaptive Grids: Objective Detection of Mass Substructure in Galaxies

no code implementations2 May 2008 S. Vegetti, L. V. E. Koopmans

In addition, we implement a Nested-Sampling technique to quantify the errors on all non-linear mass model parameters -- ... -- and allow an objective ranking of different potential models in terms of the marginalized evidence.

Cannot find the paper you are looking for? You can Submit a new open access paper.