1 code implementation • 6 Jan 2025 • Wenxuan Li, Pedro R. A. S. Bassi, Tianyu Lin, Yu-Cheng Chou, Xinze Zhou, Yucheng Tang, Fabian Isensee, Kang Wang, Qi Chen, Xiaowei Xu, Xiaoxi Chen, Lizhou Wu, Qilong Wu, Yannick Kirchhoff, Maximilian Rokuss, Saikat Roy, Yuxuan Zhao, Dexin Yu, Kai Ding, Constantin Ulrich, Klaus Maier-Hein, Yang Yang, Alan L. Yuille, Zongwei Zhou
This process often delays AI benefits, as human-centric data creation and AI-centric model development are treated as separate, sequential steps.
1 code implementation • 6 Nov 2024 • Pedro R. A. S. Bassi, Wenxuan Li, Yucheng Tang, Fabian Isensee, Zifu Wang, Jieneng Chen, Yu-Cheng Chou, Yannick Kirchhoff, Maximilian Rokuss, Ziyan Huang, Jin Ye, Junjun He, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus H. Maier-Hein, Paul Jaeger, Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Yong Xia, Zhaohu Xing, Lei Zhu, Yousef Sadegheih, Afshin Bozorgpour, Pratibha Kumari, Reza Azad, Dorit Merhof, Pengcheng Shi, Ting Ma, Yuxin Du, Fan Bai, Tiejun Huang, Bo Zhao, Haonan Wang, Xiaomeng Li, Hanxue Gu, Haoyu Dong, Jichen Yang, Maciej A. Mazurowski, Saumya Gupta, Linshan Wu, Jiaxin Zhuang, Hao Chen, Holger Roth, Daguang Xu, Matthew B. Blaschko, Sergio Decherchi, Andrea Cavalli, Alan L. Yuille, Zongwei Zhou
We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
1 code implementation • 20 Sep 2024 • Maximilian Rokuss, Yannick Kirchhoff, Saikat Roy, Balint Kovacs, Constantin Ulrich, Tassilo Wald, Maximilian Zenk, Stefan Denner, Fabian Isensee, Philipp Vollmuth, Jens Kleesiek, Klaus Maier-Hein
Accurate segmentation of Multiple Sclerosis (MS) lesions in longitudinal MRI scans is crucial for monitoring disease progression and treatment efficacy.
2 code implementations • 15 Apr 2024 • Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus Maier-Hein, Paul F. Jaeger
The release of nnU-Net marked a paradigm shift in 3D medical image segmentation, demonstrating that a properly configured U-Net architecture could still achieve state-of-the-art results.
1 code implementation • 3 Apr 2024 • Yannick Kirchhoff, Maximilian R. Rokuss, Saikat Roy, Balint Kovacs, Constantin Ulrich, Tassilo Wald, Maximilian Zenk, Philipp Vollmuth, Jens Kleesiek, Fabian Isensee, Klaus Maier-Hein
Accurately segmenting thin tubular structures, such as vessels, nerves, roads or concrete cracks, is a crucial task in computer vision.
no code implementations • 27 Jun 2023 • Marc K. Ickler, Michael Baumgartner, Saikat Roy, Tassilo Wald, Klaus H. Maier-Hein
The accurate detection of suspicious regions in medical images is an error-prone and time-consuming process required by many routinely performed diagnostic procedures.
1 code implementation • 30 May 2023 • Robin Peretzke, Klaus Maier-Hein, Jonas Bohn, Yannick Kirchhoff, Saikat Roy, Sabrina Oberli-Palma, Daniela Becker, Pavlina Lenga, Peter Neher
The method is evaluated on 21 openly available healthy subjects from the Human Connectome Project and an internal dataset of ten neurosurgical cases.
no code implementations • 10 Apr 2023 • Saikat Roy, Tassilo Wald, Gregor Koehler, Maximilian R. Rokuss, Nico Disch, Julius Holzschuh, David Zimmerer, Klaus H. Maier-Hein
Foundation models have taken over natural language processing and image generation domains due to the flexibility of prompting.
no code implementations • 9 Apr 2023 • Saikat Roy, Gregor Koehler, Michael Baumgartner, Constantin Ulrich, Jens Petersen, Fabian Isensee, Klaus Maier-Hein
Owing to success in the data-rich domain of natural images, Transformers have recently become popular in medical image segmentation.
1 code implementation • 17 Mar 2023 • Saikat Roy, Gregor Koehler, Constantin Ulrich, Michael Baumgartner, Jens Petersen, Fabian Isensee, Paul F. Jaeger, Klaus Maier-Hein
This leads to state-of-the-art performance on 4 tasks on CT and MRI modalities and varying dataset sizes, representing a modernized deep architecture for medical image segmentation.
Ranked #1 on Medical Image Segmentation on AMOS
no code implementations • 2 Feb 2018 • Saikat Roy, Nibaran Das, Mahantapas Kundu, Mita Nasipuri
In this work, a novel deep learning technique for the recognition of handwritten Bangla isolated compound character is presented and a new benchmark of recognition accuracy on the CMATERdb 3. 1. 3. 3 dataset is reported.
4 code implementations • 29 Jan 2018 • Arindam Das, Saikat Roy, Ujjwal Bhattacharya, Swapan Kumar Parui
In this work, a region-based Deep Convolutional Neural Network framework is proposed for document structure learning.
Ranked #24 on Document Image Classification on RVL-CDIP