Search Results for author: Salman Khan

Found 78 papers, 49 papers with code

Fixing Localization Errors to Improve Image Classification

1 code implementation ECCV 2020 Guolei Sun, Salman Khan, Wen Li, Hisham Cholakkal, Fahad Shahbaz Khan, Luc van Gool

This way, in an effort to fix localization errors, our loss provides an extra supervisory signal that helps the model to better discriminate between similar classes.

Classification General Classification +3

NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results

2 code implementations11 May 2022 Yawei Li, Kai Zhang, Radu Timofte, Luc van Gool, Fangyuan Kong, Mingxi Li, Songwei Liu, Zongcai Du, Ding Liu, Chenhui Zhou, Jingyi Chen, Qingrui Han, Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Yu Qiao, Chao Dong, Long Sun, Jinshan Pan, Yi Zhu, Zhikai Zong, Xiaoxiao Liu, Zheng Hui, Tao Yang, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Yanbo Wang, Xiaozhong Ji, Chuming Lin, Donghao Luo, Ying Tai, Chengjie Wang, Zhizhong Zhang, Yuan Xie, Shen Cheng, Ziwei Luo, Lei Yu, Zhihong Wen, Qi Wu1, Youwei Li, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Yuanfei Huang, Meiguang Jin, Hua Huang, Jing Liu, Xinjian Zhang, Yan Wang, Lingshun Long, Gen Li, Yuanfan Zhang, Zuowei Cao, Lei Sun, Panaetov Alexander, Yucong Wang, Minjie Cai, Li Wang, Lu Tian, Zheyuan Wang, Hongbing Ma, Jie Liu, Chao Chen, Yidong Cai, Jie Tang, Gangshan Wu, Weiran Wang, Shirui Huang, Honglei Lu, Huan Liu, Keyan Wang, Jun Chen, Shi Chen, Yuchun Miao, Zimo Huang, Lefei Zhang, Mustafa Ayazoğlu, Wei Xiong, Chengyi Xiong, Fei Wang, Hao Li, Ruimian Wen, Zhijing Yang, Wenbin Zou, Weixin Zheng, Tian Ye, Yuncheng Zhang, Xiangzhen Kong, Aditya Arora, Syed Waqas Zamir, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Dandan Gaoand Dengwen Zhouand Qian Ning, Jingzhu Tang, Han Huang, YuFei Wang, Zhangheng Peng, Haobo Li, Wenxue Guan, Shenghua Gong, Xin Li, Jun Liu, Wanjun Wang, Dengwen Zhou, Kun Zeng, Hanjiang Lin, Xinyu Chen, Jinsheng Fang

The aim was to design a network for single image super-resolution that achieved improvement of efficiency measured according to several metrics including runtime, parameters, FLOPs, activations, and memory consumption while at least maintaining the PSNR of 29. 00dB on DIV2K validation set.

Image Super-Resolution

Self-Supervised Video Object Segmentation via Cutout Prediction and Tagging

no code implementations22 Apr 2022 Jyoti Kini, Fahad Shahbaz Khan, Salman Khan, Mubarak Shah

We propose a novel self-supervised Video Object Segmentation (VOS) approach that strives to achieve better object-background discriminability for accurate object segmentation.

Frame Semantic Segmentation +3

Video Instance Segmentation via Multi-scale Spatio-temporal Split Attention Transformer

1 code implementation24 Mar 2022 Omkar Thawakar, Sanath Narayan, Jiale Cao, Hisham Cholakkal, Rao Muhammad Anwer, Muhammad Haris Khan, Salman Khan, Michael Felsberg, Fahad Shahbaz Khan

When using the ResNet50 backbone, our MS-STS achieves a mask AP of 50. 1 %, outperforming the best reported results in literature by 2. 7 % and by 4. 8 % at higher overlap threshold of AP_75, while being comparable in model size and speed on Youtube-VIS 2019 val.

Instance Segmentation Semantic Segmentation +1

Transformers in Medical Imaging: A Survey

1 code implementation24 Jan 2022 Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat, Fahad Shahbaz Khan, Huazhu Fu

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators.

Image Classification Medical Image Denoising +5

DoodleFormer: Creative Sketch Drawing with Transformers

no code implementations6 Dec 2021 Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan, Jorma Laaksonen, Michael Felsberg

Creative sketch image generation is a challenging vision problem, where the task is to generate diverse, yet realistic creative sketches possessing the unseen composition of the visual-world objects.

Image Generation

Self-supervised Video Transformer

no code implementations2 Dec 2021 Kanchana Ranasinghe, Muzammal Naseer, Salman Khan, Fahad Shahbaz Khan, Michael Ryoo

To the best of our knowledge, the proposed approach is the first to alleviate the dependency on negative samples or dedicated memory banks in Self-supervised Video Transformer (SVT).

Action Recognition Frame

OW-DETR: Open-world Detection Transformer

2 code implementations2 Dec 2021 Akshita Gupta, Sanath Narayan, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Shah

In the case of incremental object detection, OW-DETR outperforms the state-of-the-art for all settings on PASCAL VOC.

Open World Object Detection Transfer Learning

Restormer: Efficient Transformer for High-Resolution Image Restoration

5 code implementations18 Nov 2021 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang

Since convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data, these models have been extensively applied to image restoration and related tasks.

Color Image Denoising Deblurring +6

International Workshop on Continual Semi-Supervised Learning: Introduction, Benchmarks and Baselines

no code implementations27 Oct 2021 Ajmal Shahbaz, Salman Khan, Mohammad Asiful Hossain, Vincenzo Lomonaco, Kevin Cannons, Zhan Xu, Fabio Cuzzolin

The aim of this paper is to formalize a new continual semi-supervised learning (CSSL) paradigm, proposed to the attention of the machine learning community via the IJCAI 2021 International Workshop on Continual Semi-Supervised Learning (CSSL-IJCAI), with the aim of raising field awareness about this problem and mobilizing its effort in this direction.

Activity Recognition Crowd Counting

Burst Image Restoration and Enhancement

1 code implementation7 Oct 2021 Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, Ming-Hsuan Yang

Our central idea is to create a set of pseudo-burst features that combine complementary information from all the input burst frames to seamlessly exchange information.

Denoising Frame +3

Tensor Pooling Driven Instance Segmentation Framework for Baggage Threat Recognition

1 code implementation22 Aug 2021 Taimur Hassan, Samet Akcay, Mohammed Bennamoun, Salman Khan, Naoufel Werghi

Furthermore, to the best of our knowledge, this is the first contour instance segmentation framework that leverages multi-scale information to recognize cluttered and concealed contraband data from the colored and grayscale security X-ray imagery.

Instance Segmentation Semantic Segmentation

Discriminative Region-based Multi-Label Zero-Shot Learning

1 code implementation ICCV 2021 Sanath Narayan, Akshita Gupta, Salman Khan, Fahad Shahbaz Khan, Ling Shao, Mubarak Shah

We note that the best existing multi-label ZSL method takes a shared approach towards attending to region features with a common set of attention maps for all the classes.

Image Retrieval Multi-label zero-shot learning

Learning Discriminative Representations for Multi-Label Image Recognition

no code implementations23 Jul 2021 Mohammed Hassanin, Ibrahim Radwan, Salman Khan, Murat Tahtali

Multi-label recognition is a fundamental, and yet is a challenging task in computer vision.

On Improving Adversarial Transferability of Vision Transformers

2 code implementations ICLR 2022 Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Shahbaz Khan, Fatih Porikli

(ii) Token Refinement: We then propose to refine the tokens to further enhance the discriminative capacity at each block of ViT.

Adversarial Attack

Intriguing Properties of Vision Transformers

1 code implementation NeurIPS 2021 Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang

We show and analyze the following intriguing properties of ViT: (a) Transformers are highly robust to severe occlusions, perturbations and domain shifts, e. g., retain as high as 60% top-1 accuracy on ImageNet even after randomly occluding 80% of the image content.

Few-Shot Learning Semantic Segmentation

Rich Semantics Improve Few-shot Learning

1 code implementation26 Apr 2021 Mohamed Afham, Salman Khan, Muhammad Haris Khan, Muzammal Naseer, Fahad Shahbaz Khan

Human learning benefits from multi-modal inputs that often appear as rich semantics (e. g., description of an object's attributes while learning about it).

 Ranked #1 on Few-Shot Image Classification on Oxford 102 Flower (using extra training data)

Few-Shot Image Classification

Spatiotemporal Deformable Models for Long-Term Complex Activity Detection

no code implementations16 Apr 2021 Salman Khan, Fabio Cuzzolin

Long-term complex activity recognition and localisation can be crucial for the decision-making process of several autonomous systems, such as smart cars and surgical robots.

Action Detection Activity Detection +3

Handwriting Transformers

1 code implementation ICCV 2021 Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan, Mubarak Shah

We propose a novel transformer-based styled handwritten text image generation approach, HWT, that strives to learn both style-content entanglement as well as global and local writing style patterns.

Image Generation Text Generation

On Generating Transferable Targeted Perturbations

2 code implementations ICCV 2021 Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Fatih Porikli

To this end, we propose a new objective function that not only aligns the global distributions of source and target images, but also matches the local neighbourhood structure between the two domains.

Orthogonal Projection Loss

1 code implementation ICCV 2021 Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan

The CE loss encourages features of a class to have a higher projection score on the true class-vector compared to the negative classes.

Domain Generalization Few-Shot Learning

ROAD: The ROad event Awareness Dataset for Autonomous Driving

2 code implementations23 Feb 2021 Gurkirt Singh, Stephen Akrigg, Manuele Di Maio, Valentina Fontana, Reza Javanmard Alitappeh, Suman Saha, Kossar Jeddisaravi, Farzad Yousefi, Jacob Culley, Tom Nicholson, Jordan Omokeowa, Salman Khan, Stanislao Grazioso, Andrew Bradley, Giuseppe Di Gironimo, Fabio Cuzzolin

We also report the performance on the ROAD tasks of Slowfast and YOLOv5 detectors, as well as that of the winners of the ICCV2021 ROAD challenge, which highlight the challenges faced by situation awareness in autonomous driving.

Action Detection Activity Detection +4

Robust normalizing flows using Bernstein-type polynomials

no code implementations6 Feb 2021 Sameera Ramasinghe, Kasun Fernando, Salman Khan, Nick Barnes

Modeling real-world distributions can often be challenging due to sample data that are subjected to perturbations, e. g., instrumentation errors, or added random noise.

Multi-Stage Progressive Image Restoration

5 code implementations CVPR 2021 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao

At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features.

Deblurring Image Deblurring +3

Transformers in Vision: A Survey

no code implementations4 Jan 2021 Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, Mubarak Shah

Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems.

Action Recognition Colorization +9

Rethinking conditional GAN training: An approach using geometrically structured latent manifolds

1 code implementation NeurIPS 2021 Sameera Ramasinghe, Moshiur Farazi, Salman Khan, Nick Barnes, Stephen Gould

Conditional GANs (cGAN), in their rudimentary form, suffer from critical drawbacks such as the lack of diversity in generated outputs and distortion between the latent and output manifolds.

Image-to-Image Translation Translation

Meta-learning the Learning Trends Shared Across Tasks

no code implementations19 Oct 2020 Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Mubarak Shah

This demonstrates their ability to acquire transferable knowledge, a capability that is central to human learning.


Synthesizing the Unseen for Zero-shot Object Detection

1 code implementation19 Oct 2020 Nasir Hayat, Munawar Hayat, Shafin Rahman, Salman Khan, Syed Waqas Zamir, Fahad Shahbaz Khan

The existing zero-shot detection approaches project visual features to the semantic domain for seen objects, hoping to map unseen objects to their corresponding semantics during inference.

Generalized Zero-Shot Object Detection Zero-Shot Object Detection

Task-Driven Learning of Contour Integration Responses in a V1 Model

no code implementations NeurIPS Workshop SVRHM 2020 Salman Khan, Alexander Wong, Bryan P. Tripp

Under difficult viewing conditions, the brain's visual system uses a variety of modulatory techniques to augment its core feed-forward signals.

Conditional Generative Modeling via Learning the Latent Space

no code implementations ICLR 2021 Sameera Ramasinghe, Kanchana Ranasinghe, Salman Khan, Nick Barnes, Stephen Gould

Although deep learning has achieved appealing results on several machine learning tasks, most of the models are deterministic at inference, limiting their application to single-modal settings.

Attention Guided Semantic Relationship Parsing for Visual Question Answering

no code implementations5 Oct 2020 Moshiur Farazi, Salman Khan, Nick Barnes

Humans explain inter-object relationships with semantic labels that demonstrate a high-level understanding required to perform complex Vision-Language tasks such as Visual Question Answering (VQA).

Question Answering Visual Question Answering +1

Stylized Adversarial Defense

1 code implementation29 Jul 2020 Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Fatih Porikli

In contrast to existing adversarial training methods that only use class-boundary information (e. g., using a cross entropy loss), we propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust model.

Adversarial Defense

Self-supervised Knowledge Distillation for Few-shot Learning

1 code implementation17 Jun 2020 Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Mubarak Shah

Our experiments show that, even in the first stage, self-supervision can outperform current state-of-the-art methods, with further gains achieved by our second stage distillation process.

Few-Shot Image Classification Knowledge Distillation +1

A Self-supervised Approach for Adversarial Robustness

1 code implementation CVPR 2020 Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Fatih Porikli

Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems e. g., for classification, segmentation and object detection.

Adversarial Robustness General Classification +2

iTAML: An Incremental Task-Agnostic Meta-learning Approach

1 code implementation CVPR 2020 Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Mubarak Shah

In this paper, we hypothesize this problem can be avoided by learning a set of generalized parameters, that are neither specific to old nor new tasks.

Incremental Learning Meta-Learning

CycleISP: Real Image Restoration via Improved Data Synthesis

6 code implementations CVPR 2020 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao

This is mainly because the AWGN is not adequate for modeling the real camera noise which is signal-dependent and heavily transformed by the camera imaging pipeline.

Ranked #9 on Image Denoising on DND (using extra training data)

Image Denoising Image Restoration

Any-Shot Object Detection

no code implementations16 Mar 2020 Shafin Rahman, Salman Khan, Nick Barnes, Fahad Shahbaz Khan

Any-shot detection offers unique challenges compared to conventional novel object detection such as, a high imbalance between unseen, few-shot and seen object classes, susceptibility to forget base-training while learning novel classes and distinguishing novel classes from the background.

Object Detection

Learning Enriched Features for Real Image Restoration and Enhancement

11 code implementations ECCV 2020 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao

With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography, medical imaging, and remote sensing.

Image Denoising Image Enhancement +2

Fine-grained Recognition: Accounting for Subtle Differences between Similar Classes

no code implementations14 Dec 2019 Guolei Sun, Hisham Cholakkal, Salman Khan, Fahad Shahbaz Khan, Ling Shao

The main requisite for fine-grained recognition task is to focus on subtle discriminative details that make the subordinate classes different from each other.

Fine-Grained Image Classification

Towards Partial Supervision for Generic Object Counting in Natural Scenes

1 code implementation13 Dec 2019 Hisham Cholakkal, Guolei Sun, Salman Khan, Fahad Shahbaz Khan, Ling Shao, Luc van Gool

Our RLC framework further reduces the annotation cost arising from large numbers of object categories in a dataset by only using lower-count supervision for a subset of categories and class-labels for the remaining ones.

Image Classification Image-level Supervised Instance Segmentation +2

Spectral-GANs for High-Resolution 3D Point-cloud Generation

1 code implementation4 Dec 2019 Sameera Ramasinghe, Salman Khan, Nick Barnes, Stephen Gould

Point-clouds are a popular choice for vision and graphics tasks due to their accurate shape description and direct acquisition from range-scanners.

Point Cloud Generation

Representation Learning on Unit Ball with 3D Roto-Translational Equivariance

no code implementations30 Nov 2019 Sameera Ramasinghe, Salman Khan, Nick Barnes, Stephen Gould

In this work, we propose a novel `\emph{volumetric convolution}' operation that can effectively model and convolve arbitrary functions in $\mathbb{B}^3$.

3D Object Recognition Representation Learning

Understanding More about Human and Machine Attention in Deep Neural Networks

no code implementations20 Jun 2019 Qiuxia Lai, Salman Khan, Yongwei Nie, Jianbing Shen, Hanqiu Sun, Ling Shao

With three example computer vision tasks, diverse representative backbones, and famous architectures, corresponding real human gaze data, and systematically conducted large-scale quantitative studies, we quantify the consistency between artificial attention and human visual attention and offer novel insights into existing artificial attention mechanisms by giving preliminary answers to several key questions related to human and artificial attention mechanisms.

Fine-Grained Image Classification Semantic Segmentation +1

An Adaptive Random Path Selection Approach for Incremental Learning

1 code implementation3 Jun 2019 Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan, Ling Shao, Ming-Hsuan Yang

In a conventional supervised learning setting, a machine learning model has access to examples of all object classes that are desired to be recognized during the inference stage.

Ranked #7 on Incremental Learning on ImageNet100 - 10 steps (Average Incremental Accuracy Top-5 metric)

Incremental Learning Knowledge Distillation +1

iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images

3 code implementations30 May 2019 Syed Waqas Zamir, Aditya Arora, Akshita Gupta, Salman Khan, Guolei Sun, Fahad Shahbaz Khan, Fan Zhu, Ling Shao, Gui-Song Xia, Xiang Bai

Compared to existing small-scale aerial image based instance segmentation datasets, iSAID contains 15$\times$ the number of object categories and 5$\times$ the number of instances.

Instance Segmentation Object Detection +1

A Deep Journey into Super-resolution: A survey

2 code implementations16 Apr 2019 Saeed Anwar, Salman Khan, Nick Barnes

Deep convolutional networks based super-resolution is a fast-growing field with numerous practical applications.

Image Super-Resolution

Learning Digital Camera Pipeline for Extreme Low-Light Imaging

no code implementations11 Apr 2019 Syed Waqas Zamir, Aditya Arora, Salman Khan, Fahad Shahbaz Khan, Ling Shao

In low-light conditions, a conventional camera imaging pipeline produces sub-optimal images that are usually dark and noisy due to a low photon count and low signal-to-noise ratio (SNR).

Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks

1 code implementation ICCV 2019 Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen, Ling Shao

Deep neural networks are vulnerable to adversarial attacks, which can fool them by adding minuscule perturbations to the input images.

Adversarial Defense

Striking the Right Balance with Uncertainty

no code implementations CVPR 2019 Salman Khan, Munawar Hayat, Waqas Zamir, Jianbing Shen, Ling Shao

Rare classes tend to get a concentrated representation in the classification space which hampers the generalization of learned boundaries to new test examples.

Face Verification General Classification +1

Polarity Loss for Zero-shot Object Detection

2 code implementations22 Nov 2018 Shafin Rahman, Salman Khan, Nick Barnes

This setting gives rise to the need for correct alignment between visual and semantic concepts, so that the unseen objects can be identified using only their semantic attributes.

Metric Learning Zero-Shot Learning +1

A Context-aware Capsule Network for Multi-label Classification

no code implementations15 Oct 2018 Sameera Ramasinghe, C. D. Athuralya, Salman Khan

Recently proposed Capsule Network is a brain inspired architecture that brings a new paradigm to deep learning by modelling input domain variations through vector based representations.

Classification General Classification +1

Feature Affinity based Pseudo Labeling for Semi-supervised Person Re-identification

no code implementations16 May 2018 Guodong Ding, Shanshan Zhang, Salman Khan, Zhenmin Tang, Jian Zhang, Fatih Porikli

Our approach measures the affinity of unlabeled samples with the underlying clusters of labeled data samples using the intermediate feature representations from deep networks.

Data Augmentation Representation Learning +1

Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts

1 code implementation16 Mar 2018 Shafin Rahman, Salman Khan, Fatih Porikli

We hypothesize that this setting is ill-suited for real-world applications where unseen objects appear only as a part of a complex scene, warranting both the `recognition' and `localization' of an unseen category.

Zero-Shot Learning Zero-Shot Object Detection

Deep Multiple Instance Learning for Zero-shot Image Tagging

1 code implementation16 Mar 2018 Shafin Rahman, Salman Khan

In-line with the success of deep learning on traditional recognition problem, several end-to-end deep models for zero-shot recognition have been proposed in the literature.

Multiple Instance Learning Zero-Shot Learning

Regularization of Deep Neural Networks with Spectral Dropout

no code implementations23 Nov 2017 Salman Khan, Munawar Hayat, Fatih Porikli

We cast the proposed approach in the form of regular Convolutional Neural Network (CNN) weight layers using a decorrelation transform with fixed basis functions.

Let Features Decide for Themselves: Feature Mask Network for Person Re-identification

no code implementations20 Nov 2017 Guodong Ding, Salman Khan, Zhenmin Tang, Fatih Porikli

Person re-identification aims at establishing the identity of a pedestrian from a gallery that contains images of multiple people obtained from a multi-camera system.

Frame Person Re-Identification

Cannot find the paper you are looking for? You can Submit a new open access paper.