1 code implementation • 19 May 2025 • Zekai Li, Xinhao Zhong, Samir Khaki, Zhiyuan Liang, Yuhao Zhou, Mingjia Shi, Ziqiao Wang, Xuanlei Zhao, Wangbo Zhao, Ziheng Qin, Mengxuan Wu, Pengfei Zhou, Haonan Wang, David Junhao Zhang, Jia-Wei Liu, Shaobo Wang, Dai Liu, Linfeng Zhang, Guang Li, Kun Wang, Zheng Zhu, Zhiheng Ma, Joey Tianyi Zhou, Jiancheng Lv, Yaochu Jin, Peihao Wang, Kaipeng Zhang, Lingjuan Lyu, Yiran Huang, Zeynep Akata, Zhiwei Deng, Xindi Wu, George Cazenavette, Yuzhang Shang, Justin Cui, Jindong Gu, Qian Zheng, Hao Ye, Shuo Wang, Xiaobo Wang, Yan Yan, Angela Yao, Mike Zheng Shou, Tianlong Chen, Hakan Bilen, Baharan Mirzasoleiman, Manolis Kellis, Konstantinos N. Plataniotis, Zhangyang Wang, Bo Zhao, Yang You, Kai Wang
In recent years, dataset distillation has provided a reliable solution for data compression, where models trained on the resulting smaller synthetic datasets achieve performance comparable to those trained on the original datasets.
1 code implementation • 7 Apr 2025 • Mengxuan Wu, Zekai Li, Zhiyuan Liang, Moyang Li, Xuanlei Zhao, Samir Khaki, Zheng Zhu, Xiaojiang Peng, Konstantinos N. Plataniotis, Kai Wang, Wangbo Zhao, Yang You
For block redundancy, we allow each image to select SSM blocks dynamically based on an empirical observation that the inference speed of Mamba-based vision models is largely affected by the number of SSM blocks.
1 code implementation • 19 Nov 2024 • Ahmad Sajedi, Samir Khaki, Lucy Z. Liu, Ehsan Amjadian, Yuri A. Lawryshyn, Konstantinos N. Plataniotis
In this paper, we propose a novel framework called Data-to-Model Distillation (D2M) to distill the real dataset's knowledge into the learnable parameters of a pre-trained generative model by aligning rich representations extracted from real and generated images.
1 code implementation • CVPR 2025 • Kai Wang, Zekai Li, Zhi-Qi Cheng, Samir Khaki, Ahmad Sajedi, Ramakrishna Vedantam, Konstantinos N Plataniotis, Alexander Hauptmann, Yang You
Hopefully, more researchers will be inspired and encouraged to improve the practicality and efficacy of DD.
1 code implementation • 6 Aug 2024 • Zekai Li, Ziyao Guo, Wangbo Zhao, Tianle Zhang, Zhi-Qi Cheng, Samir Khaki, Kaipeng Zhang, Ahmad Sajedi, Konstantinos N Plataniotis, Kai Wang, Yang You
To achieve this, existing methods use the agent model to extract information from the target dataset and embed it into the distilled dataset.
no code implementations • 26 Jul 2024 • Zhijian Liu, Zhuoyang Zhang, Samir Khaki, Shang Yang, Haotian Tang, Chenfeng Xu, Kurt Keutzer, Song Han
Finally, it leverages a gated ensembler to apply these sparse refinements to the initial coarse predictions.
1 code implementation • 2 May 2024 • Samir Khaki, Ahmad Sajedi, Kai Wang, Lucy Z. Liu, Yuri A. Lawryshyn, Konstantinos N. Plataniotis
To address these challenges in dataset distillation, we propose the ATtentiOn Mixer (ATOM) module to efficiently distill large datasets using a mixture of channel and spatial-wise attention in the feature matching process.
1 code implementation • 26 Mar 2024 • Samir Khaki, Konstantinos N. Plataniotis
We introduce the $\textbf{O}$ne-shot $\textbf{P}$runing $\textbf{T}$echnique for $\textbf{I}$nterchangeable $\textbf{N}$etworks ($\textbf{OPTIN}$) framework as a tool to increase the efficiency of pre-trained transformer architectures $\textit{without requiring re-training}$.
1 code implementation • 2 Jan 2024 • Ahmad Sajedi, Samir Khaki, Yuri A. Lawryshyn, Konstantinos N. Plataniotis
We validate the effectiveness of our framework through experimentation with datasets from the computer vision and medical imaging domains.
2 code implementations • ICCV 2023 • Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z. Liu, Yuri A. Lawryshyn, Konstantinos N. Plataniotis
Emerging research on dataset distillation aims to reduce training costs by creating a small synthetic set that contains the information of a larger real dataset and ultimately achieves test accuracy equivalent to a model trained on the whole dataset.
1 code implementation • 8 Jul 2023 • Ahmad Sajedi, Samir Khaki, Konstantinos N. Plataniotis, Mahdi S. Hosseini
However, they fail to design an end-to-end training framework, leading to high computational complexity.
1 code implementation • 7 Jun 2023 • Samir Khaki, Weihan Luo
In this paper, we introduce a novel end-to-end pipeline for model pruning via the frequency domain.
no code implementations • 11 Apr 2023 • Mahdi S. Hosseini, Babak Ehteshami Bejnordi, Vincent Quoc-Huy Trinh, Danial Hasan, Xingwen Li, Taehyo Kim, Haochen Zhang, Theodore Wu, Kajanan Chinniah, Sina Maghsoudlou, Ryan Zhang, Stephen Yang, Jiadai Zhu, Lyndon Chan, Samir Khaki, Andrei Buin, Fatemeh Chaji, Ala Salehi, Bich Ngoc Nguyen, Dimitris Samaras, Konstantinos N. Plataniotis
Computational Pathology CPath is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images.
1 code implementation • 13 Oct 2021 • Yi Ru Wang, Samir Khaki, Weihang Zheng, Mahdi S. Hosseini, Konstantinos N. Plataniotis
Neural Architecture Search (NAS) has been pivotal in finding optimal network configurations for Convolution Neural Networks (CNNs).