no code implementations • 24 Apr 2024 • Haifeng Qian, Sujan Kumar Gonugondla, Sungsoo Ha, Mingyue Shang, Sanjay Krishna Gouda, Ramesh Nallapati, Sudipta Sengupta, Xiaofei Ma, Anoop Deoras
Speculative decoding has emerged as a powerful method to improve latency and throughput in hosting large language models.
no code implementations • 11 Apr 2024 • Yuhao Zhang, Shiqi Wang, Haifeng Qian, Zijian Wang, Mingyue Shang, Linbo Liu, Sanjay Krishna Gouda, Baishakhi Ray, Murali Krishna Ramanathan, Xiaofei Ma, Anoop Deoras
Code generation models are not robust to small perturbations, which often lead to incorrect generations and significantly degrade the performance of these models.
no code implementations • 13 Mar 2024 • Ben Athiwaratkun, Sujan Kumar Gonugondla, Sanjay Krishna Gouda, Haifeng Qian, Hantian Ding, Qing Sun, Jun Wang, Jiacheng Guo, Liangfu Chen, Parminder Bhatia, Ramesh Nallapati, Sudipta Sengupta, Bing Xiang
This study introduces bifurcated attention, a method designed to enhance language model inference in shared-context batch decoding scenarios.
no code implementations • 13 Mar 2024 • Ben Athiwaratkun, Shiqi Wang, Mingyue Shang, Yuchen Tian, Zijian Wang, Sujan Kumar Gonugondla, Sanjay Krishna Gouda, Rob Kwiatowski, Ramesh Nallapati, Bing Xiang
Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens.
1 code implementation • 28 Feb 2024 • Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, Haifeng Qian
Large Language Models are powerful tools for program synthesis and advanced auto-completion, but come with no guarantee that their output code is syntactically correct.
2 code implementations • 26 Oct 2022 • Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta, Dan Roth, Bing Xiang
Using these benchmarks, we are able to assess the performance of code generation models in a multi-lingual fashion, and discovered generalization ability of language models on out-of-domain languages, advantages of multi-lingual models over mono-lingual, the ability of few-shot prompting to teach the model new languages, and zero-shot translation abilities even on mono-lingual settings.
no code implementations • LREC 2020 • Le Zhang, Damianos Karakos, William Hartmann, Manaj Srivastava, Lee Tarlin, David Akodes, Sanjay Krishna Gouda, Numra Bathool, Lingjun Zhao, Zhuolin Jiang, Richard Schwartz, John Makhoul
In this paper, we describe a cross-lingual information retrieval (CLIR) system that, given a query in English, and a set of audio and text documents in a foreign language, can return a scored list of relevant documents, and present findings in a summary form in English.
no code implementations • 10 Mar 2018 • Sanjay Krishna Gouda, Salil Kanetkar, David Harrison, Manfred K. Warmuth
The problem of identifying voice commands has always been a challenge due to the presence of noise and variability in speed, pitch, etc.