1 code implementation • 20 Mar 2025 • Vivek Gopalakrishnan, Neel Dey, David-Dimitris Chlorogiannis, Andrew Abumoussa, Anna M. Larson, Darren B. Orbach, Sarah Frisken, Polina Golland
The integration of artificial intelligence in image-guided interventions holds transformative potential, promising to extract 3D geometric and quantitative information from conventional 2D imaging modalities during complex procedures.
1 code implementation • 24 Jan 2025 • Taewoong Lee, Sarah Frisken, Nazim Haouchine
We present a method for 3D/2D registration of Digital Subtraction Angiography (DSA) images to provide valuable insight into brain hemodynamics and angioarchitecture.
3 code implementations • 28 Nov 2024 • Mohammadhossein Momeni, Vivek Gopalakrishnan, Neel Dey, Polina Golland, Sarah Frisken
We present DiffVox, a self-supervised framework for Cone-Beam Computed Tomography (CBCT) reconstruction by directly optimizing a voxelgrid representation using physics-based differentiable X-ray rendering.
1 code implementation • 25 Oct 2024 • Reuben Dorent, Nazim Haouchine, Alexandra Golby, Sarah Frisken, Tina Kapur, William Wells
We propose a deep mixture of multimodal hierarchical variational auto-encoders called MMHVAE that synthesizes missing images from observed images in different modalities.
no code implementations • 18 Sep 2024 • Maximilian Fehrentz, Mohammad Farid Azampour, Reuben Dorent, Hassan Rasheed, Colin Galvin, Alexandra Golby, William M. Wells, Sarah Frisken, Nassir Navab, Nazim Haouchine
We present in this paper a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
no code implementations • 12 Sep 2024 • Hassan Rasheed, Reuben Dorent, Maximilian Fehrentz, Tina Kapur, William M. Wells III, Alexandra Golby, Sarah Frisken, Julia A. Schnabel, Nazim Haouchine
We propose in this paper a texture-invariant 2D keypoints descriptor specifically designed for matching preoperative Magnetic Resonance (MR) images with intraoperative Ultrasound (US) images.
no code implementations • 16 May 2024 • Reuben Dorent, Erickson Torio, Nazim Haouchine, Colin Galvin, Sarah Frisken, Alexandra Golby, Tina Kapur, William Wells
To disambiguate ultrasound imaging and adapt to the neurosurgeon's surgical objective, a patient-specific real-time network is trained using synthetic ultrasound data generated by simulating virtual iUS sweep acquisitions in pre-operative MR data.
no code implementations • 15 Feb 2024 • Kathleen Baur, Xin Xiong, Erickson Torio, Rose Du, Parikshit Juvekar, Reuben Dorent, Alexandra Golby, Sarah Frisken, Nazim Haouchine
Although Digital Subtraction Angiography (DSA) is the most important imaging for visualizing cerebrovascular anatomy, its interpretation by clinicians remains difficult.
no code implementations • 3 Oct 2023 • Nazim Haouchine, Reuben Dorent, Parikshit Juvekar, Erickson Torio, William M. Wells III, Tina Kapur, Alexandra J. Golby, Sarah Frisken
In contrast to conventional methods, our approach transfers the processing tasks to the preoperative stage, reducing thereby the impact of low-resolution, distorted, and noisy intraoperative images, that often degrade the registration accuracy.
1 code implementation • 15 Sep 2023 • Reuben Dorent, Nazim Haouchine, Fryderyk Kögl, Samuel Joutard, Parikshit Juvekar, Erickson Torio, Alexandra Golby, Sebastien Ourselin, Sarah Frisken, Tom Vercauteren, Tina Kapur, William M. Wells
We introduce MHVAE, a deep hierarchical variational auto-encoder (VAE) that synthesizes missing images from various modalities.
1 code implementation • 15 Feb 2023 • Ruben T. Lucassen, Mohammad H. Jafari, Nicole M. Duggan, Nick Jowkar, Alireza Mehrtash, Chanel Fischetti, Denie Bernier, Kira Prentice, Erik P. Duhaime, Mike Jin, Purang Abolmaesumi, Friso G. Heslinga, Mitko Veta, Maria A. Duran-Mendicuti, Sarah Frisken, Paul B. Shyn, Alexandra J. Golby, Edward Boyer, William M. Wells, Andrew J. Goldsmith, Tina Kapur
B-line artifacts in LUS videos are key findings associated with pulmonary congestion.
no code implementations • 6 Jul 2021 • Zhe Xu, Jie Luo, Donghuan Lu, Jiangpeng Yan, Sarah Frisken, Jayender Jagadeesan, William Wells III, Xiu Li, Yefeng Zheng, Raymond Tong
Such convention has two limitations: (i) Besides the laborious grid search for the optimal fixed weight, the regularization strength of a specific image pair should be associated with the content of the images, thus the "one value fits all" training scheme is not ideal; (ii) Only spatially regularizing the transformation may neglect some informative clues related to the ill-posedness.
no code implementations • 20 Mar 2020 • Jie Luo, Guangshen Ma, Sarah Frisken, Parikshit Juvekar, Nazim Haouchine, Zhe Xu, Yiming Xiao, Alexandra Golby, Patrick Codd, Masashi Sugiyama, William Wells III
In this study, we use the variogram to screen the manually annotated landmarks in two datasets used to benchmark registration in image-guided neurosurgeries.
no code implementations • 21 Aug 2019 • Jie Luo, Sarah Frisken, Duo Wang, Alexandra Golby, Masashi Sugiyama, William M. Wells III
Probabilistic image registration (PIR) methods provide measures of registration uncertainty, which could be a surrogate for assessing the registration error.
no code implementations • 20 Mar 2018 • Jie Luo, Matt Toews, Ines Machado, Sarah Frisken, Miaomiao Zhang, Frank Preiswerk, Alireza Sedghi, Hongyi Ding, Steve Pieper, Polina Golland, Alexandra Golby, Masashi Sugiyama, William M. Wells III
Kernels of the GP are estimated by using variograms and a discrete grid search method.
no code implementations • 14 Mar 2018 • Jie Luo, Alireza Sedghi, Karteek Popuri, Dana Cobzas, Miaomiao Zhang, Frank Preiswerk, Matthew Toews, Alexandra Golby, Masashi Sugiyama, William M. Wells III, Sarah Frisken
For probabilistic image registration (PIR), the predominant way to quantify the registration uncertainty is using summary statistics of the distribution of transformation parameters.