1 code implementation • 24 May 2024 • Saul Fuster, Umay Kiraz, Trygve Eftestøl, Emiel A. M. Janssen, Kjersti Engan
To distinguish different levels of malignancy within specific regions of the slide, we include the origins of the tiles in our analysis.
1 code implementation • 24 May 2024 • Saul Fuster, Farbod Khoraminia, Julio Silva-Rodríguez, Umay Kiraz, Geert J. L. H. van Leenders, Trygve Eftestøl, Valery Naranjo, Emiel A. M. Janssen, Tahlita C. M. Zuiverloon, Kjersti Engan
We present a pioneering investigation into the application of deep learning techniques to analyze histopathological images for addressing the substantial challenge of automated prognostic prediction.
no code implementations • 14 Dec 2023 • Marie Bø-Sande, Edvin Benjaminsen, Neel Kanwal, Saul Fuster, Helga Hardardottir, Ingrid Lundal, Emiel A. M. Janssen, Kjersti Engan
Melanoma is a type of cancer that begins in the cells controlling the pigment of the skin, and it is often referred to as the most dangerous skin cancer.
no code implementations • 10 Mar 2023 • Christopher Andreassen, Saul Fuster, Helga Hardardottir, Emiel A. M. Janssen, Kjersti Engan
Melanoma prognosis is based on a pathologist's subjective visual analysis of the patient's tumor.
no code implementations • 9 Mar 2023 • Saul Fuster, Farbod Khoraminia, Trygve Eftestøl, Tahlita C. M. Zuiverloon, Kjersti Engan
Accurate segmentation of tissue in histopathological images can be very beneficial for defining regions of interest (ROI) for streamline of diagnostic and prognostic tasks.
1 code implementation • 1 Nov 2021 • Saul Fuster, Trygve Eftestøl, Kjersti Engan
Strongly supervised learning requires detailed knowledge of truth labels at instance levels, and in many machine learning applications this is a major drawback.