2 code implementations • 11 Mar 2021 • Xiangyang Ju, Daniel Murnane, Paolo Calafiura, Nicholas Choma, Sean Conlon, Steve Farrell, Yaoyuan Xu, Maria Spiropulu, Jean-Roch Vlimant, Adam Aurisano, Jeremy Hewes, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Markus Atkinson, Mark Neubauer, Gage DeZoort, Savannah Thais, Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu, Alex Ballow, and Alina Lazar
The Exa. TrkX project has applied geometric learning concepts such as metric learning and graph neural networks to HEP particle tracking.
no code implementations • 10 Mar 2021 • Jeremy Hewes, Adam Aurisano, Giuseppe Cerati, Jim Kowalkowski, Claire Lee, Wei-keng Liao, Alexandra Day, Angrit Agrawal, Maria Spiropulu, Jean-Roch Vlimant, Lindsey Gray, Thomas Klijnsma, Paolo Calafiura, Sean Conlon, Steve Farrell, Xiangyang Ju, Daniel Murnane
This paper presents a graph neural network (GNN) technique for low-level reconstruction of neutrino interactions in a Liquid Argon Time Projection Chamber (LArTPC).
Object Reconstruction
High Energy Physics - Experiment
no code implementations • 30 Jun 2020 • Nicholas Choma, Daniel Murnane, Xiangyang Ju, Paolo Calafiura, Sean Conlon, Steven Farrell, Prabhat, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Panagiotis Spentzouris, Jean-Roch Vlimant, Maria Spiropulu, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao, Tracy Usher
Detector information can be associated with nodes and edges, enabling a GNN to propagate the embedded parameters around the graph and predict node-, edge- and graph-level observables.