no code implementations • 12 Feb 2024 • Holger R. Roth, Ziyue Xu, Yuan-Ting Hsieh, Adithya Renduchintala, Isaac Yang, Zhihong Zhang, Yuhong Wen, Sean Yang, Kevin Lu, Kristopher Kersten, Camir Ricketts, Daguang Xu, Chester Chen, Yan Cheng, Andrew Feng
In the ever-evolving landscape of artificial intelligence (AI) and large language models (LLMs), handling and leveraging data effectively has become a critical challenge.
1 code implementation • 24 Oct 2022 • Holger R. Roth, Yan Cheng, Yuhong Wen, Isaac Yang, Ziyue Xu, Yuan-Ting Hsieh, Kristopher Kersten, Ahmed Harouni, Can Zhao, Kevin Lu, Zhihong Zhang, Wenqi Li, Andriy Myronenko, Dong Yang, Sean Yang, Nicola Rieke, Abood Quraini, Chester Chen, Daguang Xu, Nic Ma, Prerna Dogra, Mona Flores, Andrew Feng
Federated learning (FL) enables building robust and generalizable AI models by leveraging diverse datasets from multiple collaborators without centralizing the data.
no code implementations • 12 Aug 2019 • Sean Yang, Po-shen Lee, Jevin D. West, Bill Howe
In this paper, we demonstrate the utility of using scientific figures as markers of knowledge domains in science, which can be used for classification, recommender systems, and studies of scientific information exchange.
no code implementations • 25 Oct 2018 • Ashutosh Bhown, Soham Mukherjee, Sean Yang, Shubham Chandak, Irena Fischer-Hwang, Kedar Tatwawadi, Judith Fan, Tsachy Weissman
The images, results and additional data are available at https://compression. stanford. edu/human-compression