no code implementations • 13 Nov 2024 • Jiayu Huo, Sebastien Ourselin, Rachel Sparks
Medical image translation is crucial for reducing the need for redundant and expensive multi-modal imaging in clinical field.
1 code implementation • 19 Sep 2024 • Zhen Chen, Xingjian Luo, Jinlin Wu, Long Bai, Zhen Lei, Hongliang Ren, Sebastien Ourselin, Hongbin Liu
To ensure a global understanding of the surgical procedure, we devise a phase localization strategy for SurgPLAN++ to predict phase segments across the entire video through phase proposals.
1 code implementation • 9 Sep 2024 • Qingyao Tian, Zhen Chen, Huai Liao, Xinyan Huang, Lujie Li, Sebastien Ourselin, Hongbin Liu
In this work, we present EndoOmni, the first foundation model for zero-shot cross-domain depth estimation for endoscopy.
1 code implementation • 25 Jun 2024 • Mikel De Iturrate Reyzabal, Dionysios Malas, Shuai Wang, Sebastien Ourselin, Hongbin Liu
Using internal movements generated by natural processes like breathing or the cardiac cycle, we infer the image-space basis of the motion on the frequency domain.
no code implementations • 21 Jun 2024 • Jiayu Huo, Sebastien Ourselin, Rachel Sparks
In this manuscript, we propose a comprehensive framework to efficiently generate new samples for training a brain lesion segmentation model.
no code implementations • 14 May 2024 • Zhen Chen, Xingjian Luo, Jinlin Wu, Danny T. M. Chan, Zhen Lei, Jinqiao Wang, Sebastien Ourselin, Hongbin Liu
In this work, by leveraging advanced multimodal large language models (MLLMs), we propose a Versatile Surgery Assistant (VS-Assistant) that can accurately understand the surgeon's intention and complete a series of surgical understanding tasks, e. g., surgical scene analysis, surgical instrument detection, and segmentation on demand.
no code implementations • 6 May 2024 • Harry Robertshaw, Lennart Karstensen, Benjamin Jackson, Hadi Sadati, Kawal Rhode, Sebastien Ourselin, Alejandro Granados, Thomas C Booth
Eligibility criteria included studies investigating the use of AI in enabling the autonomous navigation of catheters/guidewires in endovascular interventions.
no code implementations • 5 May 2024 • David A. Wood, Emily Guilhem, Sina Kafiabadi, Ayisha Al Busaidi, Kishan Dissanayake, Ahmed Hammam, Nina Mansoor, Matthew Townend, Siddharth Agarwal, Yiran Wei, Asif Mazumder, Gareth J. Barker, Peter Sasieni, Sebastien Ourselin, James H. Cole, Thomas C. Booth
To address these challenges, we present a self-supervised text-vision framework that learns to detect clinically relevant abnormalities in brain MRI scans by directly leveraging the rich information contained in accompanying free-text neuroradiology reports.
no code implementations • 22 Apr 2024 • Julien Quarez, Marc Modat, Sebastien Ourselin, Jonathan Shapey, Alejandro Granados
To address this, we developed a recurrent transformer model that tracks a surgeon's performance throughout a session by mapping hidden states to six OSATS, derived from kinematic data, using a clinically motivated objective function.
no code implementations • 16 Apr 2024 • Aaron Kujawa, Reuben Dorent, Sebastien Ourselin, Tom Vercauteren
A deep learning model is trained to predict merged labels.
no code implementations • 5 Apr 2024 • Chayanin Tangwiriyasakul, Pedro Borges, Stefano Moriconi, Paul Wright, Yee-Haur Mah, James Teo, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Stroke is a leading cause of disability and death.
2 code implementations • 28 Mar 2024 • Ezequiel de la Rosa, Mauricio Reyes, Sook-Lei Liew, Alexandre Hutton, Roland Wiest, Johannes Kaesmacher, Uta Hanning, Arsany Hakim, Richard Zubal, Waldo Valenzuela, David Robben, Diana M. Sima, Vincenzo Anania, Arne Brys, James A. Meakin, Anne Mickan, Gabriel Broocks, Christian Heitkamp, Shengbo Gao, Kongming Liang, Ziji Zhang, Md Mahfuzur Rahman Siddiquee, Andriy Myronenko, Pooya Ashtari, Sabine Van Huffel, Hyun-su Jeong, Chi-ho Yoon, Chulhong Kim, Jiayu Huo, Sebastien Ourselin, Rachel Sparks, Albert Clèrigues, Arnau Oliver, Xavier Lladó, Liam Chalcroft, Ioannis Pappas, Jeroen Bertels, Ewout Heylen, Juliette Moreau, Nima Hatami, Carole Frindel, Abdul Qayyum, Moona Mazher, Domenec Puig, Shao-Chieh Lin, Chun-Jung Juan, Tianxi Hu, Lyndon Boone, Maged Goubran, Yi-Jui Liu, Susanne Wegener, Florian Kofler, Ivan Ezhov, Suprosanna Shit, Moritz R. Hernandez Petzsche, Bjoern Menze, Jan S. Kirschke, Benedikt Wiestler
We address this gap by presenting a novel ensemble algorithm derived from the 2022 Ischemic Stroke Lesion Segmentation (ISLES) challenge.
1 code implementation • 23 Mar 2024 • Jiayu Huo, Ruiqiang Xiao, Haotian Zheng, Yang Liu, Sebastien Ourselin, Rachel Sparks
Few-shot learning aims to overcome the need for annotated data by using a small labeled dataset, known as a support set, to guide predicting labels for new, unlabeled images, known as the query set.
no code implementations • 22 Mar 2024 • Ze Chen, Gongyu Zhang, Jiayu Huo, Joan Nunez do Rio, Charalampos Komninos, Yang Liu, Rachel Sparks, Sebastien Ourselin, Christos Bergeles, Timothy Jackson
This study introduces a novel framework for enhancing domain generalization in medical imaging, specifically focusing on utilizing unlabelled multi-view colour fundus photographs.
1 code implementation • 19 Mar 2024 • Zhenyu Bu, Yang Liu, Jiayu Huo, Jingjing Peng, Kaini Wang, Guangquan Zhou, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
Accurate identification of End-Diastolic (ED) and End-Systolic (ES) frames is key for cardiac function assessment through echocardiography.
1 code implementation • 15 Mar 2024 • Peiran Wu, Yang Liu, Jiayu Huo, Gongyu Zhang, Christos Bergeles, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
Video-based surgical instrument segmentation plays an important role in robot-assisted surgeries.
no code implementations • 10 Mar 2024 • Maxence Boels, Yang Liu, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
In conclusion, SuPRA presents a new multi-task approach that paves the way for improved intra-operative assistance through surgical phase recognition and prediction of future events.
no code implementations • 4 Mar 2024 • Qingyao Tian, Huai Liao, Xinyan Huang, Jian Chen, Zihui Zhang, Bingyu Yang, Sebastien Ourselin, Hongbin Liu
Specifically, the relative pose changes are fed into the registration process as the initial guess to boost its accuracy and speed.
no code implementations • 27 Feb 2024 • Yang Liu, Xiaomin Yu, Gongyu Zhang, Zhen Zhu, Christos Bergeles, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
First, we introduce an innovative adaptive noise scale that effectively generates the textual elements with more variability while preserving the original text feature's integrity.
1 code implementation • 17 Jan 2024 • Mikel De Iturrate Reyzabal, Mingcong Chen, Wei Huang, Sebastien Ourselin, Hongbin Liu
In this paper, we present a new vision-haptic dataset (DaFoEs) with variable soft environments for the training of deep neural models.
2 code implementations • 31 Dec 2023 • Dimitrios Psychogyios, Emanuele Colleoni, Beatrice van Amsterdam, Chih-Yang Li, Shu-Yu Huang, Yuchong Li, Fucang Jia, Baosheng Zou, Guotai Wang, Yang Liu, Maxence Boels, Jiayu Huo, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin, Mengya Xu, An Wang, Yanan Wu, Long Bai, Hongliang Ren, Atsushi Yamada, Yuriko Harai, Yuto Ishikawa, Kazuyuki Hayashi, Jente Simoens, Pieter DeBacker, Francesco Cisternino, Gabriele Furnari, Alex Mottrie, Federica Ferraguti, Satoshi Kondo, Satoshi Kasai, Kousuke Hirasawa, Soohee Kim, Seung Hyun Lee, Kyu Eun Lee, Hyoun-Joong Kong, Kui Fu, Chao Li, Shan An, Stefanie Krell, Sebastian Bodenstedt, Nicolas Ayobi, Alejandra Perez, Santiago Rodriguez, Juanita Puentes, Pablo Arbelaez, Omid Mohareri, Danail Stoyanov
Surgical tool segmentation and action recognition are fundamental building blocks in many computer-assisted intervention applications, ranging from surgical skills assessment to decision support systems.
no code implementations • 24 Nov 2023 • M. Jorge Cardoso, Julia Moosbauer, Tessa S. Cook, B. Selnur Erdal, Brad Genereaux, Vikash Gupta, Bennett A. Landman, Tiarna Lee, Parashkev Nachev, Elanchezhian Somasundaram, Ronald M. Summers, Khaled Younis, Sebastien Ourselin, Franz MJ Pfister
The integration of AI into radiology introduces opportunities for improved clinical care provision and efficiency but it demands a meticulous approach to mitigate potential risks as with any other new technology.
no code implementations • 29 Sep 2023 • Lucia Innocenti, Michela Antonelli, Francesco Cremonesi, Kenaan Sarhan, Alejandro Granados, Vicky Goh, Sebastien Ourselin, Marco Lorenzi
To the best of our knowledge, this is the first work in which CBM, such as label fusion techniques, are used to solve a problem of collaborative learning.
1 code implementation • 15 Sep 2023 • Reuben Dorent, Nazim Haouchine, Fryderyk Kögl, Samuel Joutard, Parikshit Juvekar, Erickson Torio, Alexandra Golby, Sebastien Ourselin, Sarah Frisken, Tom Vercauteren, Tina Kapur, William M. Wells
We introduce MHVAE, a deep hierarchical variational auto-encoder (VAE) that synthesizes missing images from various modalities.
no code implementations • 9 Aug 2023 • Kelly Payette, Alena Uus, Jordina Aviles Verdera, Carla Avena Zampieri, Megan Hall, Lisa Story, Maria Deprez, Mary A. Rutherford, Joseph V. Hajnal, Sebastien Ourselin, Raphael Tomi-Tricot, Jana Hutter
In this study, we introduce a semi-automatic pipeline using quantitative MRI for the fetal body at low field strength resulting in fast and detailed quantitative T2* relaxometry analysis of all major fetal body organs.
2 code implementations • 27 Jul 2023 • Walter H. L. Pinaya, Mark S. Graham, Eric Kerfoot, Petru-Daniel Tudosiu, Jessica Dafflon, Virginia Fernandez, Pedro Sanchez, Julia Wolleb, Pedro F. da Costa, Ashay Patel, Hyungjin Chung, Can Zhao, Wei Peng, Zelong Liu, Xueyan Mei, Oeslle Lucena, Jong Chul Ye, Sotirios A. Tsaftaris, Prerna Dogra, Andrew Feng, Marc Modat, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
We have implemented these models in a generalisable fashion, illustrating that their results can be extended to 2D or 3D scenarios, including medical images with different modalities (like CT, MRI, and X-Ray data) and from different anatomical areas.
1 code implementation • 24 Jul 2023 • Martin Huber, Sebastien Ourselin, Christos Bergeles, Tom Vercauteren
In this work, we investigate laparoscopic camera motion automation through imitation learning from retrospective videos of laparoscopic interventions.
1 code implementation • 7 Jul 2023 • Mark S. Graham, Walter Hugo Lopez Pinaya, Paul Wright, Petru-Daniel Tudosiu, Yee H. Mah, James T. Teo, H. Rolf Jäger, David Werring, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
We validate the proposed approach on near- and far-OOD datasets and compare it to a recently proposed, 3D-enabled approach using Latent Transformer Models (LTMs).
1 code implementation • 2 Jul 2023 • Jiayu Huo, Yang Liu, Xi Ouyang, Alejandro Granados, Sebastien Ourselin, Rachel Sparks
In this paper, we propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
1 code implementation • 18 May 2023 • Andres Diaz-Pinto, Pritesh Mehta, Sachidanand Alle, Muhammad Asad, Richard Brown, Vishwesh Nath, Alvin Ihsani, Michela Antonelli, Daniel Palkovics, Csaba Pinter, Ron Alkalay, Steve Pieper, Holger R. Roth, Daguang Xu, Prerna Dogra, Tom Vercauteren, Andrew Feng, Abood Quraini, Sebastien Ourselin, M. Jorge Cardoso
Automatic segmentation of medical images is a key step for diagnostic and interventional tasks.
1 code implementation • 15 May 2023 • Yang Liu, Maxence Boels, Luis C. Garcia-Peraza-Herrera, Tom Vercauteren, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
Our results demonstrate the effectiveness of our approach in achieving state-of-the-art performance of surgical phase recognition on two datasets of different surgical procedures and temporal sequencing characteristics whilst introducing mechanisms that cope with long videos.
Ranked #1 on Surgical phase recognition on Cholec80
no code implementations • 14 Apr 2023 • Ashay Patel, Petru-Danial Tudiosu, Walter H. L. Pinaya, Gary Cook, Vicky Goh, Sebastien Ourselin, M. Jorge Cardoso
In addition, we show the efficacy of this approach on out-of-sample data showcasing the generalizability of this approach with limited training data.
1 code implementation • 14 Mar 2023 • Luis C. Garcia-Peraza-Herrera, Conor Horgan, Sebastien Ourselin, Michael Ebner, Tom Vercauteren
Visual discrimination of clinical tissue types remains challenging, with traditional RGB imaging providing limited contrast for such tasks.
1 code implementation • 15 Feb 2023 • Luis C. Garcia-Peraza-Herrera, Sebastien Ourselin, Tom Vercauteren
It is thus unsurprising that substantial research efforts are made to develop methods aiming at mitigating the scarcity of annotated SDS data.
no code implementations • 25 Jan 2023 • Dominic Giles, Robert Gray, Chris Foulon, Guilherme Pombo, James K. Ruffle, Tianbo Xu, H. Rolf Jäger, Jorge Cardoso, Sebastien Ourselin, Geraint Rees, Ashwani Jha, Parashkev Nachev
The gold standard in the treatment of ischaemic stroke is set by evidence from randomized controlled trials, based on simple descriptions of presumptively homogeneous populations.
1 code implementation • ICCV 2023 • Yang Liu, Jiayu Huo, Jingjing Peng, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, Sebastien Ourselin
We highlight that the inference time of SKiT is constant, and independent from the input length, making it a stable choice for keeping a record of important global information, that appears on long surgical videos, essential for phase recognition.
no code implementations • 29 Dec 2022 • Vikash Gupta, Barbaros Selnur Erdal, Carolina Ramirez, Ralf Floca, Laurence Jackson, Brad Genereaux, Sidney Bryson, Christopher P Bridge, Jens Kleesiek, Felix Nensa, Rickmer Braren, Khaled Younis, Tobias Penzkofer, Andreas Michael Bucher, Ming Melvin Qin, Gigon Bae, Hyeonhoon Lee, M. Jorge Cardoso, Sebastien Ourselin, Eric Kerfoot, Rahul Choudhury, Richard D. White, Tessa Cook, David Bericat, Matthew Lungren, Risto Haukioja, Haris Shuaib
To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation.
1 code implementation • 14 Nov 2022 • Mark S. Graham, Walter H. L. Pinaya, Petru-Daniel Tudosiu, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
We propose to use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs.
1 code implementation • 11 Nov 2022 • Jiayu Huo, Liyun Chen, Yang Liu, Maxence Boels, Alejandro Granados, Sebastien Ourselin, Rachel Sparks
Accurate stroke lesion segmentation plays a pivotal role in stroke rehabilitation research, to provide lesion shape and size information which can be used for quantification of the extent of the stroke and to assess treatment efficacy.
2 code implementations • 4 Nov 2022 • M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien Ourselin, Andrew Feng
For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e. g. geometry, physiology, physics) of medical data being processed.
no code implementations • 1 Nov 2022 • Aya Mutaz Zeidan, Paula Ramirez Gilliland, Ashay Patel, Zhanchong Ou, Dimitra Flouri, Nada Mufti, Kasia Maksym, Rosalind Aughwane, Sebastien Ourselin, Anna David, Andrew Melbourne
We explore the application of model fitting techniques, linear regression machine learning models, deep learning regression, and Haralick textured features from multi-contrast MRI for multi-fetal organ analysis of FGR.
1 code implementation • 26 Oct 2022 • Charlie Budd, Luis C. Garcia-Peraza-Herrera, Martin Huber, Sebastien Ourselin, Tom Vercauteren
The estimation of the content area is a common task in endoscopic image processing and computer vision pipelines.
1 code implementation • 15 Sep 2022 • Walter H. L. Pinaya, Petru-Daniel Tudosiu, Jessica Dafflon, Pedro F Da Costa, Virginia Fernandez, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
In this study, we explore using Latent Diffusion Models to generate synthetic images from high-resolution 3D brain images.
1 code implementation • 7 Sep 2022 • Petru-Daniel Tudosiu, Walter Hugo Lopez Pinaya, Mark S. Graham, Pedro Borges, Virginia Fernandez, Dai Yang, Jeremy Appleyard, Guido Novati, Disha Mehra, Mike Vella, Parashkev Nachev, Sebastien Ourselin, Jorge Cardoso
Still, the ability to produce high-resolution 3D volumetric imaging data with correct anatomical morphology has been hampered by data scarcity and algorithmic and computational limitations.
no code implementations • 5 Aug 2022 • Jiayu Huo, Vejay Vakharia, Chengyuan Wu, Ashwini Sharan, Andrew Ko, Sebastien Ourselin, Rachel Sparks
Concretely, our framework consists of two sequential networks: a mask synthesis network and a mask-guided lesion synthesis network.
1 code implementation • 5 Aug 2022 • Samuel Joutard, Reuben Dorent, Sebastien Ourselin, Tom Vercauteren, Marc Modat
Among the various registration methods proposed for this task, probabilistic displacement registration models estimate displacement distribution for a subset of points by comparing feature vectors of points from the two images.
1 code implementation • 13 Jun 2022 • Mikael Brudfors, Yael Balbastre, John Ashburner, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Data used in image segmentation are not always defined on the same grid.
no code implementations • 7 Jun 2022 • Walter H. L. Pinaya, Mark S. Graham, Robert Gray, Pedro F Da Costa, Petru-Daniel Tudosiu, Paul Wright, Yee H. Mah, Andrew D. MacKinnon, James T. Teo, Rolf Jager, David Werring, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Deep generative models have emerged as promising tools for detecting arbitrary anomalies in data, dispensing with the necessity for manual labelling.
1 code implementation • 21 May 2022 • Mark S Graham, Petru-Daniel Tudosiu, Paul Wright, Walter Hugo Lopez Pinaya, U Jean-Marie, Yee Mah, James Teo, Rolf H Jäger, David Werring, Parashkev Nachev, Sebastien Ourselin, M Jorge Cardoso
We find all of these approaches are unsuitable for safe segmentation as they provide confidently wrong predictions when operating OOD.
2 code implementations • 23 Mar 2022 • Andres Diaz-Pinto, Sachidanand Alle, Vishwesh Nath, Yucheng Tang, Alvin Ihsani, Muhammad Asad, Fernando Pérez-García, Pritesh Mehta, Wenqi Li, Mona Flores, Holger R. Roth, Tom Vercauteren, Daguang Xu, Prerna Dogra, Sebastien Ourselin, Andrew Feng, M. Jorge Cardoso
MONAI Label allows researchers to make incremental improvements to their AI-based annotation application by making them available to other researchers and clinicians alike.
no code implementations • 23 Feb 2022 • Mauricio Orbes-Arteaga, Thomas Varsavsky, Lauge Sorensen, Mads Nielsen, Akshay Pai, Sebastien Ourselin, Marc Modat, M Jorge Cardoso
The insertion of deep learning in medical image analysis had lead to the development of state-of-the art strategies in several applications such a disease classification, as well as abnormality detection and segmentation.
1 code implementation • 11 Feb 2022 • Daniel Sobotka, Michael Ebner, Ernst Schwartz, Karl-Heinz Nenning, Athena Taymourtash, Tom Vercauteren, Sebastien Ourselin, Gregor Kasprian, Daniela Prayer, Georg Langs, Roxane Licandro
Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI.
3 code implementations • 8 Jan 2022 • Reuben Dorent, Aaron Kujawa, Marina Ivory, Spyridon Bakas, Nicola Rieke, Samuel Joutard, Ben Glocker, Jorge Cardoso, Marc Modat, Kayhan Batmanghelich, Arseniy Belkov, Maria Baldeon Calisto, Jae Won Choi, Benoit M. Dawant, Hexin Dong, Sergio Escalera, Yubo Fan, Lasse Hansen, Mattias P. Heinrich, Smriti Joshi, Victoriya Kashtanova, Hyeon Gyu Kim, Satoshi Kondo, Christian N. Kruse, Susana K. Lai-Yuen, Hao Li, Han Liu, Buntheng Ly, Ipek Oguz, Hyungseob Shin, Boris Shirokikh, Zixian Su, Guotai Wang, Jianghao Wu, Yanwu Xu, Kai Yao, Li Zhang, Sebastien Ourselin, Jonathan Shapey, Tom Vercauteren
The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137).
1 code implementation • 1 Dec 2021 • Da Ma, Manuel J Cardoso, Maria A Zuluaga, Marc Modat, Nick M Powell, Frances K Wiseman, Jon O Cleary, Benjamin Sinclair, Ian F Harrison, Bernard Siow, Karteek Popuri, Sieun Lee, Joanne A Matsubara, Marinko V Sarunic, Mirza Faisal Beg, Victor L J Tybulewicz, Elizabeth M C Fisher, Mark F Lythgoe, Sebastien Ourselin
Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules.
no code implementations • 29 Nov 2021 • Guilherme Pombo, Robert Gray, Jorge Cardoso, Sebastien Ourselin, Geraint Rees, John Ashburner, Parashkev Nachev
The model is intended to synthesise counterfactual training data augmentations for downstream discriminative modelling tasks where fidelity is limited by data imbalance, distributional instability, confounding, or underspecification, and exhibits inequitable performance across distinct subpopulations.
no code implementations • 7 Nov 2021 • Pedro Borges, Richard Shaw, Thomas Varsavsky, Kerstin Klaser, David Thomas, Ivana Drobnjak, Sebastien Ourselin, M Jorge Cardoso
Combining multi-site data can strengthen and uncover trends, but is a task that is marred by the influence of site-specific covariates that can bias the data and therefore any downstream analyses.
no code implementations • 4 Nov 2021 • Pedro Borges, Richard Shaw, Thomas Varsavsky, Kerstin Klaser, David Thomas, Ivana Drobnjak, Sebastien Ourselin, M Jorge Cardoso
Being able to adequately process and combine data arising from different sites is crucial in neuroimaging, but is difficult, owing to site, sequence and acquisition-parameter dependent biases.
no code implementations • 17 Oct 2021 • Amy PK Nelson, Robert J Gray, James K Ruffle, Henry C Watkins, Daniel Herron, Nick Sorros, Danil Mikhailov, M. Jorge Cardoso, Sebastien Ourselin, Nick McNally, Bryan Williams, Geraint E. Rees, Parashkev Nachev
We show that citations are only moderately predictive of translational impact as judged by inclusion in patents, guidelines, or policy documents.
no code implementations • 6 Sep 2021 • Richard Shaw, Carole H. Sudre, Sebastien Ourselin, M. Jorge Cardoso, Hugh G. Pemberton
We aim to automate the process using a probabilistic network that estimates segmentation uncertainty through a heteroscedastic noise model, providing a measure of task-specific quality.
no code implementations • 3 Sep 2021 • Peichao Li, Michael Ebner, Philip Noonan, Conor Horgan, Anisha Bahl, Sebastien Ourselin, Jonathan Shapey, Tom Vercauteren
Hyperspectral imaging is one of the most promising techniques for intraoperative tissue characterisation.
no code implementations • 21 Jul 2021 • Henry Watkins, Robert Gray, Adam Julius, Yee-Haur Mah, Walter H. L. Pinaya, Paul Wright, Ashwani Jha, Holger Engleitner, Jorge Cardoso, Sebastien Ourselin, Geraint Rees, Rolf Jaeger, Parashkev Nachev
Radiological reports typically summarize the content and interpretation of imaging studies in unstructured form that precludes quantitative analysis.
1 code implementation • 1 Jul 2021 • Reuben Dorent, Samuel Joutard, Jonathan Shapey, Aaron Kujawa, Marc Modat, Sebastien Ourselin, Tom Vercauteren
We introduce $\textit{InExtremIS}$, a weakly supervised 3D approach to train a deep image segmentation network using particularly weak train-time annotations: only 6 extreme clicks at the boundary of the objects of interest.
no code implementations • 21 Jun 2021 • Richard Shaw, Carole H. Sudre, Sebastien Ourselin, M. Jorge Cardoso
Thus, we argue that quality control for visual assessment cannot be equated to quality control for algorithmic processing.
no code implementations • 15 Jun 2021 • David A. Wood, Sina Kafiabadi, Ayisha Al Busaidi, Emily Guilhem, Antanas Montvila, Siddharth Agarwal, Jeremy Lynch, Matthew Townend, Gareth Barker, Sebastien Ourselin, James H. Cole, Thomas C. Booth
The growing demand for head magnetic resonance imaging (MRI) examinations, along with a global shortage of radiologists, has led to an increase in the time taken to report head MRI scans around the world.
1 code implementation • 10 Jun 2021 • Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, AnnetteKopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Goli Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, Henkjan Huisman, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbelaez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Namkug Kim, Ildoo Kim, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein, M. Jorge Cardoso
Segmentation is so far the most widely investigated medical image processing task, but the various segmentation challenges have typically been organized in isolation, such that algorithm development was driven by the need to tackle a single specific clinical problem.
2 code implementations • 25 Apr 2021 • Xiangde Luo, Guotai Wang, Tao Song, Jingyang Zhang, Michael Aertsen, Jan Deprest, Sebastien Ourselin, Tom Vercauteren, Shaoting Zhang
To solve these problems, we propose a novel deep learning-based interactive segmentation method that not only has high efficiency due to only requiring clicks as user inputs but also generalizes well to a range of previously unseen objects.
no code implementations • 15 Apr 2021 • Thomas Booth, Bernice Akpinar, Andrei Roman, Haris Shuaib, Aysha Luis, Alysha Chelliah, Ayisha Al Busaidi, Ayesha Mirchandani, Burcu Alparslan, Nina Mansoor, Keyoumars Ashkan, Sebastien Ourselin, Marc Modat
The small numbers of patient included in studies, the high risk of bias and concerns of applicability in the study designs (particularly in relation to the reference standard and patient selection due to confounding), and the low level of evidence, suggest that limited conclusions can be drawn from the data.
no code implementations • 23 Feb 2021 • Walter Hugo Lopez Pinaya, Petru-Daniel Tudosiu, Robert Gray, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Pathological brain appearances may be so heterogeneous as to be intelligible only as anomalies, defined by their deviation from normality rather than any specific pathological characteristic.
1 code implementation • 19 Feb 2021 • Luis C. Garcia-Peraza-Herrera, Martin Everson, Laurence Lovat, Hsiu-Po Wang, Wen Lun Wang, Rehan Haidry, Danail Stoyanov, Sebastien Ourselin, Tom Vercauteren
A future work path of high clinical relevance is the extension of the classification to ESCN types.
1 code implementation • 18 Feb 2021 • Luis C. Garcia-Peraza-Herrera, Lucas Fidon, Claudia D'Ettorre, Danail Stoyanov, Tom Vercauteren, Sebastien Ourselin
Background data is captured by collecting videos that do not contain instruments.
no code implementations • 16 Jan 2021 • M. Jorge Cardoso, Marc Modat, Tom Vercauteren, Sebastien Ourselin
Imaging devices exploit the Nyquist-Shannon sampling theorem to avoid both aliasing and redundant oversampling by design.
1 code implementation • 30 Dec 2020 • Loic Peter, Marcel Tella-Amo, Dzhoshkun Ismail Shakir, Jan Deprest, Sebastien Ourselin, Juan Eugenio Iglesias, Tom Vercauteren
In addition to the efficient construction of a mosaic, our framework provides, as a by-product, ground truth landmark correspondences which can be used for evaluation or learning purposes.
1 code implementation • 3 Nov 2020 • Lucas Fidon, Sebastien Ourselin, Tom Vercauteren
We stuck to a generic and state-of-the-art 3D U-Net architecture and experimented with a non-standard per-sample loss function, the generalized Wasserstein Dice loss, a non-standard population loss function, corresponding to distributionally robust optimization, and a non-standard optimizer, Ranger.
1 code implementation • 2 Nov 2020 • Benjamin Murray, Eric Kerfoot, Mark S. Graham, Carole H. Sudre, Erika Molteni, Liane S. Canas, Michela Antonelli, Kerstin Klaser, Alessia Visconti, Andrew T. Chan, Paul W. Franks, Richard Davies, Jonathan Wolf, Tim Spector, Claire J. Steves, Marc Modat, Sebastien Ourselin
We present ExeTera, an open source data curation software designed to address scalability challenges and to enable reproducible research across an international research group for datasets such as the Covid Symptom Study dataset.
no code implementations • 16 Sep 2020 • Mark S. Graham, Carole H. Sudre, Thomas Varsavsky, Petru-Daniel Tudosiu, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
We introduce a hierarchically-aware brain parcellation method that works by predicting the decisions at each branch in the label tree.
1 code implementation • 8 Sep 2020 • Reuben Dorent, Thomas Booth, Wenqi Li, Carole H. Sudre, Sina Kafiabadi, Jorge Cardoso, Sebastien Ourselin, Tom Vercauteren
However, few existing approaches allow for the joint segmentation of normal tissue and brain lesions.
1 code implementation • 12 Aug 2020 • Oeslle Lucena, Sjoerd B. Vos, Vejay Vakharia, John Duncan, Keyoumars Ashkan, Rachel Sparks, Sebastien Ourselin
We evaluate how well each CNN model can resolve local fiber orientation 1) when training and testing on datasets with the same dMRI acquisition protocol; 2) when testing on a dataset with a different dMRI acquisition protocol than used to train the CNN models; and 3) when testing on a dataset with a fewer number of gradient directions than used to train the CNN models.
1 code implementation • 8 Jul 2020 • Sophia Bano, Francisco Vasconcelos, Luke M. Shepherd, Emmanuel Vander Poorten, Tom Vercauteren, Sebastien Ourselin, Anna L. David, Jan Deprest, Danail Stoyanov
We propose a solution utilising the U-Net architecture for performing placental vessel segmentation in fetoscopic videos.
1 code implementation • 7 Jul 2020 • Reuben Dorent, Samuel Joutard, Jonathan Shapey, Sotirios Bisdas, Neil Kitchen, Robert Bradford, Shakeel Saeed, Marc Modat, Sebastien Ourselin, Tom Vercauteren
Instead of requiring detailed but time-consuming annotations, scribbles on the target domain are used to perform domain adaptation.
1 code implementation • 2 Jul 2020 • Guotai Wang, Michael Aertsen, Jan Deprest, Sebastien Ourselin, Tom Vercauteren, Shaoting Zhang
Experimental results show that: (1) our proposed CNN obtains uncertainty estimation in real time which correlates well with mis-segmentations, (2) the proposed interactive level set is effective and efficient for refinement, (3) UGIR obtains accurate refinement results with around 30% improvement of efficiency by using uncertainty to guide user interactions.
no code implementations • 5 Jun 2020 • Markus D. Schirmer, Archana Venkataraman, Islem Rekik, Minjeong Kim, Stewart H. Mostofsky, Mary Beth Nebel, Keri Rosch, Karen Seymour, Deana Crocetti, Hassna Irzan, Michael Hütel, Sebastien Ourselin, Neil Marlow, Andrew Melbourne, Egor Levchenko, Shuo Zhou, Mwiza Kunda, Haiping Lu, Nicha C. Dvornek, Juntang Zhuang, Gideon Pinto, Sandip Samal, Jennings Zhang, Jorge L. Bernal-Rusiel, Rudolph Pienaar, Ai Wern Chung
A second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing.
no code implementations • 18 Mar 2020 • Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett Landman, Klaus Maier-Hein, Sebastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, M. Jorge Cardoso
Data-driven Machine Learning has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems.
no code implementations • MIDL 2019 • Petru-Daniel Tudosiu, Thomas Varsavsky, Richard Shaw, Mark Graham, Parashkev Nachev, Sebastien Ourselin, Carole H. Sudre, M. Jorge Cardoso
The increasing efficiency and compactness of deep learning architectures, together with hardware improvements, have enabled the complex and high-dimensional modelling of medical volumetric data at higher resolutions.
4 code implementations • 9 Feb 2020 • Razvan V. Marinescu, Neil P. Oxtoby, Alexandra L. Young, Esther E. Bron, Arthur W. Toga, Michael W. Weiner, Frederik Barkhof, Nick C. Fox, Arman Eshaghi, Tina Toni, Marcin Salaterski, Veronika Lunina, Manon Ansart, Stanley Durrleman, Pascal Lu, Samuel Iddi, Dan Li, Wesley K. Thompson, Michael C. Donohue, Aviv Nahon, Yarden Levy, Dan Halbersberg, Mariya Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose G. Tamez-Pena, Aya Ismail, Timothy Wood, Hector Corrada Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. T. Thomas Yeo, Gang Chen, Ke Qi, Shiyang Chen, Deqiang Qiu, Ionut Buciuman, Alex Kelner, Raluca Pop, Denisa Rimocea, Mostafa M. Ghazi, Mads Nielsen, Sebastien Ourselin, Lauge Sorensen, Vikram Venkatraghavan, Keli Liu, Christina Rabe, Paul Manser, Steven M. Hill, James Howlett, Zhiyue Huang, Steven Kiddle, Sach Mukherjee, Anais Rouanet, Bernd Taschler, Brian D. M. Tom, Simon R. White, Noel Faux, Suman Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, Karol Estrada, Leon Aksman, Andre Altmann, Cynthia M. Stonnington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clementine Fourrier, Lars Lau Raket, Aristeidis Sotiras, Guray Erus, Jimit Doshi, Christos Davatzikos, Jacob Vogel, Andrew Doyle, Angela Tam, Alex Diaz-Papkovich, Emmanuel Jammeh, Igor Koval, Paul Moore, Terry J. Lyons, John Gallacher, Jussi Tohka, Robert Ciszek, Bruno Jedynak, Kruti Pandya, Murat Bilgel, William Engels, Joseph Cole, Polina Golland, Stefan Klein, Daniel C. Alexander
TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease.
no code implementations • MIDL 2019 • Richard Shaw, Carole H. Sudre, Sebastien Ourselin, M. Jorge Cardoso
By augmenting the training data with different types of simulated k-space artefacts, we propose a novel cascading CNN architecture based on a student-teacher framework to decouple sources of uncertainty related to different k-space augmentations in an entirely self-supervised manner.
no code implementations • 22 Dec 2019 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, Marc Modat, M. Jorge Cardoso, Sebastien Ourselin, Lauge Sorensen
Weight initialization is important for faster convergence and stability of deep neural networks training.
no code implementations • 25 Sep 2019 • Lucas Fidon, Sebastien Ourselin, Tom Vercauteren
Similar to a hard example mining strategy in essence and in practice, the proposed algorithm is straightforward to implement and computationally as efficient as SGD-based optimizers used for deep learning.
no code implementations • ICCV 2019 • Felix J. S. Bragman, Ryutaro Tanno, Sebastien Ourselin, Daniel C. Alexander, M. Jorge Cardoso
The performance of multi-task learning in Convolutional Neural Networks (CNNs) hinges on the design of feature sharing between tasks within the architecture.
no code implementations • 21 Aug 2019 • Kerstin Kläser, Thomas Varsavsky, Pawel Markiewicz, Tom Vercauteren, David Atkinson, Kris Thielemans, Brian Hutton, M. Jorge Cardoso, Sebastien Ourselin
Quantitative results show that the network generates pCTs that seem less accurate when evaluating the Mean Absolute Error on the pCT (69. 68HU) compared to a baseline CNN (66. 25HU), but lead to significant improvement in the PET reconstruction - 115a. u.
no code implementations • 16 Aug 2019 • Mauricio Orbes-Arteaga, Jorge Cardoso, Lauge Sørensen, Christian Igel, Sebastien Ourselin, Marc Modat, Mads Nielsen, Akshay Pai
As a result, their performance is significantly lower on data from unseen sources compared to the performance on data from the same source as the training data.
no code implementations • 25 Jul 2019 • Zach Eaton-Rosen, Thomas Varsavsky, Sebastien Ourselin, M. Jorge Cardoso
Counting is a fundamental task in biomedical imaging and count is an important biomarker in a number of conditions.
1 code implementation • 15 Jul 2019 • Sophia Bano, Francisco Vasconcelos, Marcel Tella Amo, George Dwyer, Caspar Gruijthuijsen, Jan Deprest, Sebastien Ourselin, Emmanuel Vander Poorten, Tom Vercauteren, Danail Stoyanov
Mosaicking can align multiple overlapping images to generate an image with increased FoV, however, existing techniques apply poorly to fetoscopy due to the low visual quality, texture paucity, and hence fail in longer sequences due to the drift accumulated over time.
no code implementations • 7 Jul 2019 • Reuben Dorent, Wenqi Li, Jinendra Ekanayake, Sebastien Ourselin, Tom Vercauteren
Developing a DNN for such joint task is currently hampered by the fact that annotated datasets typically address only one specific task and rely on a task-specific hetero-modal imaging protocol.
1 code implementation • 1 Jul 2019 • Samuel Joutard, Reuben Dorent, Amanda Isaac, Sebastien Ourselin, Tom Vercauteren, Marc Modat
Medical image processing tasks such as segmentation often require capturing non-local information.
no code implementations • 10 Jun 2019 • Guotai Wang, Jonathan Shapey, Wenqi Li, Reuben Dorent, Alex Demitriadis, Sotirios Bisdas, Ian Paddick, Robert Bradford, Sebastien Ourselin, Tom Vercauteren
Automatic segmentation of vestibular schwannoma (VS) tumors from magnetic resonance imaging (MRI) would facilitate efficient and accurate volume measurement to guide patient management and improve clinical workflow.
no code implementations • 17 Mar 2019 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Lauge Sørensen
The proposed LSTM algorithm is applied to model the progression of Alzheimer's disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i. e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method.
no code implementations • 21 Feb 2019 • Xiahai Zhuang, Lei LI, Christian Payer, Darko Stern, Martin Urschler, Mattias P. Heinrich, Julien Oster, Chunliang Wang, Orjan Smedby, Cheng Bian, Xin Yang, Pheng-Ann Heng, Aliasghar Mortazi, Ulas Bagci, Guanyu Yang, Chenchen Sun, Gaetan Galisot, Jean-Yves Ramel, Thierry Brouard, Qianqian Tong, Weixin Si, Xiangyun Liao, Guodong Zeng, Zenglin Shi, Guoyan Zheng, Chengjia Wang, Tom MacGillivray, David Newby, Kawal Rhode, Sebastien Ourselin, Raad Mohiaddin, Jennifer Keegan, David Firmin, Guang Yang
This manuscript presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017.
no code implementations • 19 Feb 2019 • Stephen Morrell, Zbigniew Wojna, Can Son Khoo, Sebastien Ourselin, Juan Eugenio Iglesias
State-of-the-art deep learning methods for image processing are evolving into increasingly complex meta-architectures with a growing number of modules.
1 code implementation • 8 Jan 2019 • Da Ma, Manuel J. Cardoso, Maria A. Zuluaga, Marc Modat, Nick. Powell, Frances Wiseman, Victor Tybulewicz, Elizabeth Fisher, Mark. F. Lythgoe, Sebastien Ourselin
In this work, we introduce a framework to extract the Purkinje layer within the grey matter, enabling the estimation of the thickness of the cerebellar grey matter, the granular layer and molecular layer from gadolinium-enhanced ex vivo mouse brain MRI.
1 code implementation • 5 Nov 2018 • Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze
This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.
no code implementations • 18 Oct 2018 • Guotai Wang, Wenqi Li, Sebastien Ourselin, Tom Vercauteren
Automatic brain tumor segmentation plays an important role for diagnosis, surgical planning and treatment assessment of brain tumors.
no code implementations • 3 Oct 2018 • Mauricio Orbes Arteaga, Lauge Sørensen, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Stefan Sommer, Mads Nielsen, Christian Igel, Akshay Pai
For proper generalization performance of convolutional neural networks (CNNs) in medical image segmentation, the learnt features should be invariant under particular non-linear shape variations of the input.
no code implementations • 14 Sep 2018 • Stefano Moriconi, Maria A. Zuluaga, H. Rolf Jager, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
Vascular graphs can embed a number of high-level features, from morphological parameters, to functional biomarkers, and represent an invaluable tool for longitudinal and cross-sectional clinical inference.
no code implementations • 22 Aug 2018 • Kerstin Kläser, Pawel Markiewicz, Marta Ranzini, Wenqi Li, Marc Modat, Brian F. Hutton, David Atkinson, Kris Thielemans, M. Jorge Cardoso, Sebastien Ourselin
Attenuation correction is an essential requirement of positron emission tomography (PET) image reconstruction to allow for accurate quantification.
no code implementations • 16 Aug 2018 • Mostafa Mehdipour Ghazi, Mads Nielsen, Akshay Pai, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin, Lauge Sørensen
This paper shows that built-in handling of missing values in LSTM network training paves the way for application of RNNs in disease progression modeling.
no code implementations • 19 Jul 2018 • Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sebastien Ourselin, Tom Vercauteren
In this work, we analyze these different types of uncertainties for CNN-based 2D and 3D medical image segmentation tasks.
no code implementations • 22 Jun 2018 • Zach Eaton-Rosen, Felix Bragman, Sotirios Bisdas, Sebastien Ourselin, M. Jorge Cardoso
Automated medical image segmentation, specifically using deep learning, has shown outstanding performance in semantic segmentation tasks.
no code implementations • 18 Jun 2018 • Felix J. S. Bragman, Ryutaro Tanno, Zach Eaton-Rosen, Wenqi Li, David J. Hawkes, Sebastien Ourselin, Daniel C. Alexander, Jamie R. McClelland, M. Jorge Cardoso
Multi-task neural network architectures provide a mechanism that jointly integrates information from distinct sources.
no code implementations • 7 May 2018 • Sebastian Bodenstedt, Max Allan, Anthony Agustinos, Xiaofei Du, Luis Garcia-Peraza-Herrera, Hannes Kenngott, Thomas Kurmann, Beat Müller-Stich, Sebastien Ourselin, Daniil Pakhomov, Raphael Sznitman, Marvin Teichmann, Martin Thoma, Tom Vercauteren, Sandrine Voros, Martin Wagner, Pamela Wochner, Lena Maier-Hein, Danail Stoyanov, Stefanie Speidel
The paper presents a comparative validation study of different vision-based methods for instrument segmentation and tracking in the context of robotic as well as conventional laparoscopic surgery.
no code implementations • 2 May 2018 • Luis C. Garcia-Peraza-Herrera, Martin Everson, Wenqi Li, Inmanol Luengo, Lorenz Berger, Omer Ahmad, Laurence Lovat, Hsiu-Po Wang, Wen-Lun Wang, Rehan Haidry, Danail Stoyanov, Tom Vercauteren, Sebastien Ourselin
We present a new approach to visualise attention that aims to give some insights on those areas of the oesophageal tissue that lead a network to conclude that the images belong to a particular class and compare them with those visual features employed by clinicians to produce a clinical diagnosis.
no code implementations • 6 Feb 2018 • Jyotirmoy Banerjee, Premal A. Patel, Fred Ushakov, Donald Peebles, Jan Deprest, Sebastien Ourselin, David Hawkes, Tom Vercauteren
We propose a spatial compounding technique and variational framework to improve 3D ultrasound image quality by compositing multiple ultrasound volumes acquired from different probe orientations.
no code implementations • 16 Jan 2018 • Juan Eugenio Iglesias, Marc Modat, Loic Peter, Allison Stevens, Roberto Annunziata, Tom Vercauteren, Ed Lein, Bruce Fischl, Sebastien Ourselin
Here, we overcome this limitation with a probabilistic method that simultaneously solves for registration and synthesis directly on the target images, without any training data.
no code implementations • 11 Oct 2017 • Guotai Wang, Wenqi Li, Maria A. Zuluaga, Rosalind Pratt, Premal A. Patel, Michael Aertsen, Tom Doel, Anna L. David, Jan Deprest, Sebastien Ourselin, Tom Vercauteren
Experimental results show that 1) our model is more robust to segment previously unseen objects than state-of-the-art CNNs; 2) image-specific fine-tuning with the proposed weighted loss function significantly improves segmentation accuracy; and 3) our method leads to accurate results with fewer user interactions and less user time than traditional interactive segmentation methods.
1 code implementation • ICCV 2017 • Sotiris Nousias, Francois Chadebecq, Jonas Pichat, Pearse Keane, Sebastien Ourselin, Christos Bergeles
We propose a method for geometric calibration of multi-focus plenoptic cameras using raw images.
no code implementations • ICCV 2017 • Francois Chadebecq, Francisco Vasconcelos, George Dwyer, Rene Lacher, Sebastien Ourselin, Tom Vercauteren, Danail Stoyanov
By explicitly considering a refractive interface, we develop a succinct derivation of the refractive fundamental matrix in the form of the generalised epipolar constraint for an axial camera.
no code implementations • 8 Sep 2017 • Lorenz Berger, Eoin Hyde, M. Jorge Cardoso, Sebastien Ourselin
Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation.
7 code implementations • 1 Sep 2017 • Guotai Wang, Wenqi Li, Sebastien Ourselin, Tom Vercauteren
A cascade of fully convolutional neural networks is proposed to segment multi-modal Magnetic Resonance (MR) images with brain tumor into background and three hierarchical regions: whole tumor, tumor core and enhancing tumor core.
Ranked #1 on Brain Tumor Segmentation on BRATS-2014
no code implementations • 31 Aug 2017 • Andreas Hauptmann, Felix Lucka, Marta Betcke, Nam Huynh, Jonas Adler, Ben Cox, Paul Beard, Sebastien Ourselin, Simon Arridge
Recent advances in deep learning for tomographic reconstructions have shown great potential to create accurate and high quality images with a considerable speed-up.
no code implementations • 27 Aug 2017 • Jonas Pichat, Juan Eugenio Iglesias, Sotiris Nousias, Tarek Yousry, Sebastien Ourselin, Marc Modat
We propose here a novel automatic approach to the joint problem of multimodal registration between histology and MRI, when only a fraction of tissue is available from histology.
4 code implementations • 6 Jul 2017 • Wenqi Li, Guotai Wang, Lucas Fidon, Sebastien Ourselin, M. Jorge Cardoso, Tom Vercauteren
To illustrate its efficiency of learning 3D representation from large-scale image data, the proposed network is validated with the challenging task of parcellating 155 neuroanatomical structures from brain MR images.
1 code implementation • 3 Jul 2017 • Lucas Fidon, Wenqi Li, Luis C. Garcia-Peraza-Herrera, Jinendra Ekanayake, Neil Kitchen, Sebastien Ourselin, Tom Vercauteren
3) We show that the joint use of holistic CNNs and generalised Wasserstein Dice scores achieves segmentations that are more semantically meaningful for brain tumour segmentation.