no code implementations • EMNLP 2020 • Semih Yavuz, Kazuma Hashimoto, Wenhao Liu, Nitish Shirish Keskar, Richard Socher, Caiming Xiong
The concept of Dialogue Act (DA) is universal across different task-oriented dialogue domains - the act of {``}request{''} carries the same speaker intention whether it is for restaurant reservation or flight booking.
no code implementations • 23 May 2023 • Srijan Bansal, Semih Yavuz, Bo Pang, Meghana Bhat, Yingbo Zhou
Question-answering (QA) tasks often investigate specific question types, knowledge domains, or reasoning skills, leading to specialized models catering to specific categories of QA tasks.
no code implementations • 12 May 2023 • Ye Liu, Semih Yavuz, Rui Meng, Dragomir Radev, Caiming Xiong, Yingbo Zhou
It comprises two central pillars: (1) We parse the question of varying complexity into an intermediate representation, named H-expression, which is composed of simple questions as the primitives and symbolic operations representing the relationships among them; (2) To execute the resulting H-expressions, we design a hybrid executor, which integrates the deterministic rules to translate the symbolic operations with a drop-in neural reader network to answer each decomposed simple question.
no code implementations • 3 Apr 2023 • Lifu Tu, Jin Qu, Semih Yavuz, Shafiq Joty, Wenhao Liu, Caiming Xiong, Yingbo Zhou
We evaluate our model's cross-lingual generalization capabilities on two conversation tasks: slot-filling and intent classification.
no code implementations • 17 Dec 2022 • Rui Meng, Ye Liu, Semih Yavuz, Divyansh Agarwal, Lifu Tu, Ning Yu, JianGuo Zhang, Meghana Bhat, Yingbo Zhou
Dense retrievers have made significant strides in text retrieval and open-domain question answering, even though most achievements were made possible only with large amounts of human supervision.
no code implementations • 9 Nov 2022 • Ye Liu, Semih Yavuz, Rui Meng, Dragomir Radev, Caiming Xiong, Yingbo Zhou
Parsing natural language questions into executable logical forms is a useful and interpretable way to perform question answering on structured data such as knowledge bases (KB) or databases (DB).
no code implementations • Findings (NAACL) 2022 • Haopeng Zhang, Semih Yavuz, Wojciech Kryscinski, Kazuma Hashimoto, Yingbo Zhou
Abstractive summarization systems leveraging pre-training language models have achieved superior results on benchmark datasets.
2 code implementations • 25 May 2022 • Liyan Tang, Tanya Goyal, Alexander R. Fabbri, Philippe Laban, Jiacheng Xu, Semih Yavuz, Wojciech Kryściński, Justin F. Rousseau, Greg Durrett
We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models.
no code implementations • ACL 2022 • Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, Nitish Shirish Keskar, Caiming Xiong
Fusion-in-decoder (Fid) (Izacard and Grave, 2020) is a generative question answering (QA) model that leverages passage retrieval with a pre-trained transformer and pushed the state of the art on single-hop QA.
1 code implementation • 23 Mar 2022 • Tian Xie, Xinyi Yang, Angela S. Lin, Feihong Wu, Kazuma Hashimoto, Jin Qu, Young Mo Kang, Wenpeng Yin, Huan Wang, Semih Yavuz, Gang Wu, Michael Jones, Richard Socher, Yingbo Zhou, Wenhao Liu, Caiming Xiong
At the core of the struggle is the need to script every single turn of interactions between the bot and the human user.
no code implementations • SpaNLP (ACL) 2022 • Man Luo, Kazuma Hashimoto, Semih Yavuz, Zhiwei Liu, Chitta Baral, Yingbo Zhou
Among several interesting findings, it is important to highlight that (1) the generative readers perform better in long context QA, (2) the extractive readers perform better in short context while also showing better out-of-domain generalization, and (3) the encoder of encoder-decoder PrLMs (e. g., T5) turns out to be a strong extractive reader and outperforms the standard choice of encoder-only PrLMs (e. g., RoBERTa).
1 code implementation • Findings (EMNLP) 2021 • Ye Liu, Kazuma Hashimoto, Yingbo Zhou, Semih Yavuz, Caiming Xiong, Philip S. Yu
In this work, we propose Dense Hierarchical Retrieval (DHR), a hierarchical framework that can generate accurate dense representations of passages by utilizing both macroscopic semantics in the document and microscopic semantics specific to each passage.
1 code implementation • ACL 2022 • Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, Caiming Xiong
We present RnG-KBQA, a Rank-and-Generate approach for KBQA, which remedies the coverage issue with a generation model while preserving a strong generalization capability.
no code implementations • Findings (EMNLP) 2021 • Shiyang Li, Semih Yavuz, Wenhu Chen, Xifeng Yan
Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data.
1 code implementation • ACL 2021 • Qingyun Wang, Semih Yavuz, Victoria Lin, Heng Ji, Nazneen Rajani
Graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders.
Ranked #3 on
Data-to-Text Generation
on WebNLG
(using extra training data)
2 code implementations • ICLR 2021 • Shiyang Li, Semih Yavuz, Kazuma Hashimoto, Jia Li, Tong Niu, Nazneen Rajani, Xifeng Yan, Yingbo Zhou, Caiming Xiong
Dialogue state trackers have made significant progress on benchmark datasets, but their generalization capability to novel and realistic scenarios beyond the held-out conversations is less understood.
Ranked #2 on
Multi-domain Dialogue State Tracking
on MULTIWOZ 2.1
(using extra training data)
Dialogue State Tracking
Multi-domain Dialogue State Tracking
no code implementations • EMNLP 2021 • Tong Niu, Semih Yavuz, Yingbo Zhou, Nitish Shirish Keskar, Huan Wang, Caiming Xiong
To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step.
1 code implementation • NeurIPS 2020 • Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, Richard Socher
Task-oriented dialogue is often decomposed into three tasks: understanding user input, deciding actions, and generating a response.
Ranked #4 on
End-To-End Dialogue Modelling
on MULTIWOZ 2.1
1 code implementation • 31 Oct 2019 • Arvind Neelakantan, Semih Yavuz, Sharan Narang, Vishaal Prasad, Ben Goodrich, Daniel Duckworth, Chinnadhurai Sankar, Xifeng Yan
In this paper, we develop Neural Assistant: a single neural network model that takes conversation history and an external knowledge source as input and jointly produces both text response and action to be taken by the system as output.
1 code implementation • IJCNLP 2019 • Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai Sankar, Arvind Neelakantan, Daniel Duckworth, Semih Yavuz, Ben Goodrich, Amit Dubey, Andy Cedilnik, Kyu-Young Kim
A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data.
no code implementations • WS 2019 • Semih Yavuz, Abhinav Rastogi, Guan-Lin Chao, Dilek Hakkani-Tur
Recent advances in neural sequence-to-sequence models have led to promising results for several language generation-based tasks, including dialogue response generation, summarization, and machine translation.
no code implementations • WS 2019 • Guan-Lin Chao, Abhinav Rastogi, Semih Yavuz, Dilek Hakkani-Tür, Jindong Chen, Ian Lane
Understanding and conversing about dynamic scenes is one of the key capabilities of AI agents that navigate the environment and convey useful information to humans.
no code implementations • ACL 2019 • Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruoming Pang, Wei Li, Colin Raffel
Simultaneous machine translation begins to translate each source sentence before the source speaker is finished speaking, with applications to live and streaming scenarios.
2 code implementations • 21 Feb 2019 • Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models.
no code implementations • EMNLP 2018 • Semih Yavuz, Chung-Cheng Chiu, Patrick Nguyen, Yonghui Wu
Maximum-likelihood estimation (MLE) is one of the most widely used approaches for training structured prediction models for text-generation based natural language processing applications.
no code implementations • EMNLP 2018 • Semih Yavuz, Izzeddin Gur, Yu Su, Xifeng Yan
The SQL queries in WikiSQL are simple: Each involves one relation and does not have any join operation.
no code implementations • ACL 2018 • Izzeddin Gur, Semih Yavuz, Yu Su, Xifeng Yan
The recent advance in deep learning and semantic parsing has significantly improved the translation accuracy of natural language questions to structured queries.
no code implementations • EMNLP 2017 • Semih Yavuz, Izzeddin Gur, Yu Su, Xifeng Yan
The existing factoid QA systems often lack a post-inspection component that can help models recover from their own mistakes.
1 code implementation • NAACL 2018 • Yu Su, Honglei Liu, Semih Yavuz, Izzeddin Gur, Huan Sun, Xifeng Yan
We study the problem of textual relation embedding with distant supervision.