1 code implementation • 14 Feb 2022 • Seokju Cho, Sunghwan Hong, Seungryong Kim
Cost aggregation is a highly important process in image matching tasks, which aims to disambiguate the noisy matching scores.
Ranked #1 on
Semantic correspondence
on SPair-71k
no code implementations • 25 Jan 2022 • Jiwon Kim, Kwangrok Ryoo, Gyuseong Lee, Seokju Cho, Junyoung Seo, Daehwan Kim, Hansang Cho, Seungryong Kim
In this paper, we address this limitation with a novel SSL framework for aggregating pseudo labels, called AggMatch, which refines initial pseudo labels by using different confident instances.
2 code implementations • 22 Dec 2021 • Sunghwan Hong, Seokju Cho, Jisu Nam, Seungryong Kim
We introduce a novel cost aggregation network, dubbed Volumetric Aggregation with Transformers (VAT), to tackle the few-shot segmentation task by using both convolutions and transformers to efficiently handle high dimensional correlation maps between query and support.
Ranked #1 on
Few-Shot Semantic Segmentation
on FSS-1000 (5-shot)
1 code implementation • NeurIPS 2021 • Seokju Cho, Sunghwan Hong, Sangryul Jeon, Yunsung Lee, Kwanghoon Sohn, Seungryong Kim
We propose a novel cost aggregation network, called Cost Aggregation Transformers (CATs), to find dense correspondences between semantically similar images with additional challenges posed by large intra-class appearance and geometric variations.
Ranked #2 on
Semantic correspondence
on PF-PASCAL