1 code implementation • 30 Dec 2024 • Mariia Baidachna, Rey Guadarrama, Gopal Ramesh Dahale, Tom Magorsch, Isabel Pedraza, Konstantin T. Matchev, Katia Matcheva, Kyoungchul Kong, Sergei Gleyzer
Diffusion models have demonstrated remarkable success in image generation, but they are computationally intensive and time-consuming to train.
1 code implementation • 22 Nov 2024 • Jogi Suda Neto, Roy T. Forestano, Sergei Gleyzer, Kyoungchul Kong, Konstantin T. Matchev, Katia Matcheva
Discovering new phenomena at the Large Hadron Collider (LHC) involves the identification of rare signals over conventional backgrounds.
no code implementations • 20 Nov 2024 • Alessandro Tesi, Gopal Ramesh Dahale, Sergei Gleyzer, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia Matcheva
We present a novel hybrid quantum-classical vision transformer architecture incorporating quantum orthogonal neural networks (QONNs) to enhance performance and computational efficiency in high-energy physics applications.
no code implementations • 8 Jul 2024 • Sofia Strukova, Sergei Gleyzer, Patrick Peplowski, Jason P. Terry
This study introduces a data-driven approach using machine learning (ML) techniques to explore and predict albedo anomalies on the Moon's surface.
1 code implementation • 4 Jul 2024 • Eric A. F. Reinhardt, P. R. Dinesh, Sergei Gleyzer
We show that our model can perform better than or comparable to B-Spline KAN models and an alternative KAN implementation based on periodic cosine and sine functions representing a Fourier Series.
1 code implementation • 16 May 2024 • Marçal Comajoan Cara, Gopal Ramesh Dahale, Zhongtian Dong, Roy T. Forestano, Sergei Gleyzer, Daniel Justice, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia Matcheva, Eyup B. Unlu
We introduce a hybrid quantum-classical vision transformer architecture, notable for its integration of variational quantum circuits within both the attention mechanism and the multi-layer perceptrons.
no code implementations • 1 Feb 2024 • Eyup B. Unlu, Marçal Comajoan Cara, Gopal Ramesh Dahale, Zhongtian Dong, Roy T. Forestano, Sergei Gleyzer, Daniel Justice, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia Matcheva
Models based on vision transformer architectures are considered state-of-the-art when it comes to image classification tasks.
1 code implementation • 30 Nov 2023 • Zhongtian Dong, Marçal Comajoan Cara, Gopal Ramesh Dahale, Roy T. Forestano, Sergei Gleyzer, Daniel Justice, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia Matcheva, Eyup B. Unlu
Our results show that the $\mathbb{Z}_2\times \mathbb{Z}_2$ EQNN and the QNN provide superior performance for smaller parameter sets and modest training data samples.
1 code implementation • 30 Nov 2023 • Roy T. Forestano, Marçal Comajoan Cara, Gopal Ramesh Dahale, Zhongtian Dong, Sergei Gleyzer, Daniel Justice, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia Matcheva, Eyup B. Unlu
In this paper, we perform a fair and comprehensive comparison between classical graph neural networks (GNNs) and equivariant graph neural networks (EGNNs) and their quantum counterparts: quantum graph neural networks (QGNNs) and equivariant quantum graph neural networks (EQGNN).
no code implementations • 13 Jun 2023 • Marco Knipfer, Stefan Meier, Jonas Heimerl, Peter Hommelhoff, Sergei Gleyzer
To address this challenge, we present a new spatiotemporal machine learning model to identify and reconstruct the position and time of such multi-hit particle signals.
no code implementations • 17 Nov 2022 • Jason Terry, Cassandra Hall, Sean Abreau, Sergei Gleyzer
Exoplanets in protoplanetary disks cause localized deviations from Keplerian velocity in channel maps of molecular line emission.
1 code implementation • 17 Jun 2022 • Abdulhakim Alnuqaydan, Sergei Gleyzer, Harrison Prosper
In this work, we use a sequence-to-sequence model, specifically, a transformer, to compute a key element of the cross section calculation, namely, the squared amplitude of an interaction.
no code implementations • 19 Apr 2021 • Michael Andrews, Bjorn Burkle, Yi-fan Chen, Davide DiCroce, Sergei Gleyzer, Ulrich Heintz, Meenakshi Narain, Manfred Paulini, Nikolas Pervan, Yusef Shafi, Wei Sun, Emanuele Usai, Kun Yang
We describe a novel application of the end-to-end deep learning technique to the task of discriminating top quark-initiated jets from those originating from the hadronization of a light quark or a gluon.
no code implementations • 5 Apr 2021 • Ali Hariri, Darya Dyachkova, Sergei Gleyzer
Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community.
1 code implementation • 16 Sep 2019 • Stephon Alexander, Sergei Gleyzer, Evan McDonough, Michael W. Toomey, Emanuele Usai
With thousands of strong lensing images anticipated with the coming launch of LSST, we expect that supervised and unsupervised deep learning models will play a crucial role in determining the nature of dark matter.
Cosmology and Nongalactic Astrophysics Instrumentation and Methods for Astrophysics High Energy Physics - Phenomenology
1 code implementation • 21 Feb 2019 • Michael Andrews, John Alison, Sitong An, Patrick Bryant, Bjorn Burkle, Sergei Gleyzer, Meenakshi Narain, Manfred Paulini, Barnabas Poczos, Emanuele Usai
We describe the construction of end-to-end jet image classifiers based on simulated low-level detector data to discriminate quark- vs. gluon-initiated jets with high-fidelity simulated CMS Open Data.
1 code implementation • 31 Jul 2018 • Michael Andrews, Manfred Paulini, Sergei Gleyzer, Barnabas Poczos
This paper describes the construction of novel end-to-end image-based classifiers that directly leverage low-level simulated detector data to discriminate signal and background processes in pp collision events at the Large Hadron Collider at CERN.
no code implementations • 8 Jul 2018 • Kim Albertsson, Piero Altoe, Dustin Anderson, John Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Bjorn Burkle, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Yi-fan Chen, Taylor Childers, Yann Coadou, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Andrea De Simone, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ulrich Heintz, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Sydney Otten, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Wei Sun, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Justin Vasel, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Kun Yang, Omar Zapata
In this document we discuss promising future research and development areas for machine learning in particle physics.
BIG-bench Machine Learning
Vocal Bursts Intensity Prediction