no code implementations • 27 Jul 2022 • Kuang-Huei Lee, Ofir Nachum, Tingnan Zhang, Sergio Guadarrama, Jie Tan, Wenhao Yu
Evolution Strategy (ES) algorithms have shown promising results in training complex robotic control policies due to their massive parallelism capability, simple implementation, effective parameter-space exploration, and fast training time.
1 code implementation • 30 May 2022 • Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, Igor Mordatch
Specifically, we show that a single transformer-based model - with a single set of weights - trained purely offline can play a suite of up to 46 Atari games simultaneously at close-to-human performance.
1 code implementation • NeurIPS 2021 • Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, Ian Fischer
We verify this by developing SimCLR and BYOL formulations compatible with the Conditional Entropy Bottleneck (CEB) objective, allowing us to both measure and control the amount of compression in the learned representation, and observe their impact on downstream tasks.
Ranked #43 on Self-Supervised Image Classification on ImageNet
1 code implementation • NeurIPS 2020 • Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, Sergio Guadarrama
The Predictive Information is the mutual information between the past and the future, I(X_past; X_future).
1 code implementation • ICLR 2020 • Stephanie C. Y. Chan, Samuel Fishman, John Canny, Anoop Korattikara, Sergio Guadarrama
To aid RL researchers and production users with the evaluation and improvement of reliability, we propose a set of metrics that quantitatively measure different aspects of reliability.
no code implementations • ICLR 2019 • Justin Fu, Anoop Korattikara, Sergey Levine, Sergio Guadarrama
In this work, we investigate the problem of grounding language commands as reward functions using inverse reinforcement learning, and argue that language-conditioned rewards are more transferable than language-conditioned policies to new environments.
1 code implementation • ECCV 2018 • Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, Kevin Murphy
We use large amounts of unlabeled video to learn models for visual tracking without manual human supervision.
1 code implementation • 18 Jul 2017 • Zbigniew Wojna, Vittorio Ferrari, Sergio Guadarrama, Nathan Silberman, Liang-Chieh Chen, Alireza Fathi, Jasper Uijlings
Many machine vision applications, such as semantic segmentation and depth prediction, require predictions for every pixel of the input image.
no code implementations • 19 May 2017 • Sergio Guadarrama, Ryan Dahl, David Bieber, Mohammad Norouzi, Jonathon Shlens, Kevin Murphy
Then, given the generated low-resolution color image and the original grayscale image as inputs, we train a second CNN to generate a high-resolution colorization of an image.
Ranked #3 on Colorization on ImageNet val
1 code implementation • 30 Mar 2017 • Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang, Hyun Oh Song, Sergio Guadarrama, Kevin P. Murphy
We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together.
2 code implementations • ICCV 2017 • Si-Qi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, Kevin Murphy
Finally, we show that using our PG method we can optimize any of the metrics, including the proposed SPIDEr metric which results in image captions that are strongly preferred by human raters compared to captions generated by the same model but trained to optimize MLE or the COCO metrics.
14 code implementations • CVPR 2017 • Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang song, Sergio Guadarrama, Kevin Murphy
On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.
Ranked #226 on Object Detection on COCO test-dev (using extra training data)
no code implementations • ICCV 2015 • Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban, Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin P. Murphy
We present a system which can recognize the contents of your meal from a single image, and then predict its nutritional contents, such as calories.
7 code implementations • CVPR 2015 • Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama, Kate Saenko, Trevor Darrell
Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise.
Ranked #3 on Human Interaction Recognition on BIT
no code implementations • 16 Sep 2014 • Johannes Lederer, Sergio Guadarrama
Sparse Filtering is a popular feature learning algorithm for image classification pipelines.
1 code implementation • NeurIPS 2014 • Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross Girshick, Trevor Darrell, Kate Saenko
A major challenge in scaling object detection is the difficulty of obtaining labeled images for large numbers of categories.
2 code implementations • 20 Jun 2014 • Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor Darrell
The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.