no code implementations • 2 Dec 2024 • Christian Bluethgen, Dave Van Veen, Cyril Zakka, Katherine Link, Aaron Fanous, Roxana Daneshjou, Thomas Frauenfelder, Curtis Langlotz, Sergios Gatidis, Akshay Chaudhari
At the heart of radiological practice is the challenge of integrating complex imaging data with clinical information to produce actionable insights.
no code implementations • 27 Nov 2024 • Eva Prakash, Jeya Maria Jose Valanarasu, Zhihong Chen, Eduardo Pontes Reis, Andrew Johnston, Anuj Pareek, Christian Bluethgen, Sergios Gatidis, Cameron Olsen, Akshay Chaudhari, Andrew Ng, Curtis Langlotz
We explored methods like using a proxy model and using radiologist feedback to improve the quality of synthetic data.
no code implementations • 27 Nov 2024 • Magdalini Paschali, Zhihong Chen, Louis Blankemeier, Maya Varma, Alaa Youssef, Christian Bluethgen, Curtis Langlotz, Sergios Gatidis, Akshay Chaudhari
Given the potentially transformative impact that foundation models can have on the field of radiology, this review aims to establish a standardized terminology concerning foundation models, with a specific focus on the requirements of training data, model training paradigms, model capabilities, and evaluation strategies.
1 code implementation • 24 Oct 2024 • Aya Ghoul, Kerstin Hammernik, Andreas Lingg, Patrick Krumm, Daniel Rueckert, Sergios Gatidis, Thomas Küstner
The accelerated scans in such applications result in imaging artifacts that compromise the motion estimation.
1 code implementation • 26 Jul 2024 • Sarah Müller, Louisa Fay, Lisa M. Koch, Sergios Gatidis, Thomas Küstner, Philipp Berens
Medical imaging cohorts are often confounded by factors such as acquisition devices, hospital sites, patient backgrounds, and many more.
1 code implementation • 3 Jul 2024 • Siying Xu, Kerstin Hammernik, Andreas Lingg, Jens Kuebler, Patrick Krumm, Daniel Rueckert, Sergios Gatidis, Thomas Kuestner
To address these limitations, we propose to embed information from multiple domains, including low-rank, image, and k-space, in a novel deep learning network for MRI reconstruction, which we denote as A-LIKNet.
no code implementations • 10 Jun 2024 • Louis Blankemeier, Joseph Paul Cohen, Ashwin Kumar, Dave Van Veen, Syed Jamal Safdar Gardezi, Magdalini Paschali, Zhihong Chen, Jean-Benoit Delbrouck, Eduardo Reis, Cesar Truyts, Christian Bluethgen, Malte Engmann Kjeldskov Jensen, Sophie Ostmeier, Maya Varma, Jeya Maria Jose Valanarasu, Zhongnan Fang, Zepeng Huo, Zaid Nabulsi, Diego Ardila, Wei-Hung Weng, Edson Amaro Junior, Neera Ahuja, Jason Fries, Nigam H. Shah, Andrew Johnston, Robert D. Boutin, Andrew Wentland, Curtis P. Langlotz, Jason Hom, Sergios Gatidis, Akshay S. Chaudhari
However, current medical VLMs are generally limited to 2D images and short reports, and do not leverage electronic health record (EHR) data for supervision.
1 code implementation • 26 Apr 2024 • Aya Ghoul, Jiazhen Pan, Andreas Lingg, Jens Kübler, Patrick Krumm, Kerstin Hammernik, Daniel Rueckert, Sergios Gatidis, Thomas Küstner
The proposed method was evaluated on in-house acquired fully sampled and accelerated data of 101 patients and 62 healthy subjects undergoing cardiac and thoracic MRI.
no code implementations • 19 Apr 2024 • Chih-Ying Liu, Jeya Maria Jose Valanarasu, Camila Gonzalez, Curtis Langlotz, Andrew Ng, Sergios Gatidis
Most deep learning models in medical imaging are trained on adult data with unclear performance on pediatric images.
1 code implementation • 8 Mar 2024 • Asad Aali, Dave Van Veen, Yamin Ishraq Arefeen, Jason Hom, Christian Bluethgen, Eduardo Pontes Reis, Sergios Gatidis, Namuun Clifford, Joseph Daws, Arash S. Tehrani, Jangwon Kim, Akshay S. Chaudhari
Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs.
1 code implementation • 22 Jan 2024 • Zhihong Chen, Maya Varma, Justin Xu, Magdalini Paschali, Dave Van Veen, Andrew Johnston, Alaa Youssef, Louis Blankemeier, Christian Bluethgen, Stephan Altmayer, Jeya Maria Jose Valanarasu, Mohamed Siddig Eltayeb Muneer, Eduardo Pontes Reis, Joseph Paul Cohen, Cameron Olsen, Tanishq Mathew Abraham, Emily B. Tsai, Christopher F. Beaulieu, Jenia Jitsev, Sergios Gatidis, Jean-Benoit Delbrouck, Akshay S. Chaudhari, Curtis P. Langlotz
The CheXagent-drafted reports improved the writing efficiency of both radiology residents and attending radiologists in 81% and 61% of cases, respectively, without loss of quality.
1 code implementation • 14 Sep 2023 • Dave Van Veen, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad Aali, Christian Bluethgen, Anuj Pareek, Malgorzata Polacin, Eduardo Pontes Reis, Anna Seehofnerova, Nidhi Rohatgi, Poonam Hosamani, William Collins, Neera Ahuja, Curtis P. Langlotz, Jason Hom, Sergios Gatidis, John Pauly, Akshay S. Chaudhari
Analyzing vast textual data and summarizing key information from electronic health records imposes a substantial burden on how clinicians allocate their time.
1 code implementation • 30 Aug 2023 • Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger
For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.
no code implementations • 27 Aug 2023 • Scott L. Fleming, Alejandro Lozano, William J. Haberkorn, Jenelle A. Jindal, Eduardo P. Reis, Rahul Thapa, Louis Blankemeier, Julian Z. Genkins, Ethan Steinberg, Ashwin Nayak, Birju S. Patel, Chia-Chun Chiang, Alison Callahan, Zepeng Huo, Sergios Gatidis, Scott J. Adams, Oluseyi Fayanju, Shreya J. Shah, Thomas Savage, Ethan Goh, Akshay S. Chaudhari, Nima Aghaeepour, Christopher Sharp, Michael A. Pfeffer, Percy Liang, Jonathan H. Chen, Keith E. Morse, Emma P. Brunskill, Jason A. Fries, Nigam H. Shah
The ability of large language models (LLMs) to follow natural language instructions with human-level fluency suggests many opportunities in healthcare to reduce administrative burden and improve quality of care.
1 code implementation • 5 Aug 2022 • Jan Nikolas Morshuis, Sergios Gatidis, Matthias Hein, Christian F. Baumgartner
Deep Learning (DL) methods have shown promising results for solving ill-posed inverse problems such as MR image reconstruction from undersampled $k$-space data.
no code implementations • 9 May 2022 • Yan-Ran, Wang, Liangqiong Qu, Natasha Diba Sheybani, Xiaolong Luo, Jiangshan Wang, Kristina Elizabeth Hawk, Ashok Joseph Theruvath, Sergios Gatidis, Xuerong Xiao, Allison Pribnow, Daniel Rubin, Heike E. Daldrup-Link
In this study, we utilize the global similarity between baseline and follow-up PET and magnetic resonance (MR) images to develop Masked-LMCTrans, a longitudinal multi-modality co-attentional CNN-Transformer that provides interaction and joint reasoning between serial PET/MRs of the same patient.
1 code implementation • 19 Jul 2021 • Thomas Küstner, Jiazhen Pan, Haikun Qi, Gastao Cruz, Christopher Gilliam, Thierry Blu, Bin Yang, Sergios Gatidis, René Botnar, Claudia Prieto
Physiological motion, such as cardiac and respiratory motion, during Magnetic Resonance (MR) image acquisition can cause image artifacts.
1 code implementation • 29 Jun 2021 • Uddeshya Upadhyay, Yanbei Chen, Tobias Hepp, Sergios Gatidis, Zeynep Akata
However, the state-of-the-art GAN-based frameworks do not estimate the uncertainty in the predictions made by the network that is essential for making informed medical decisions and subsequent revision by medical experts and has recently been shown to improve the performance and interpretability of the model.
no code implementations • 15 Mar 2021 • Karim Armanious, Sherif Abdulatif, Wenbin Shi, Tobias Hepp, Sergios Gatidis, Bin Yang
We apply the proposed methodology on a brain MRI dataset containing healthy individuals as well as Alzheimer's patients.
1 code implementation • 29 Nov 2020 • August DuMont Schütte, Jürgen Hetzel, Sergios Gatidis, Tobias Hepp, Benedikt Dietz, Stefan Bauer, Patrick Schwab
Our study offers valuable guidelines and outlines practical conditions under which insights derived from synthetic medical images are similar to those that would have been derived from real imaging data.
1 code implementation • 22 Sep 2020 • Karim Armanious, Sherif Abdulatif, Wenbin Shi, Shashank Salian, Thomas Küstner, Daniel Weiskopf, Tobias Hepp, Sergios Gatidis, Bin Yang
Thus, a whole-body assessment of the BA does not reflect the deviations of aging behavior between organs.
1 code implementation • 5 Aug 2020 • Thomas Küstner, Tobias Hepp, Marc Fischer, Martin Schwartz, Andreas Fritsche, Hans-Ulrich Häring, Konstantin Nikolaou, Fabian Bamberg, Bin Yang, Fritz Schick, Sergios Gatidis, Jürgen Machann
Methods: Quantification and localization of different adipose tissue compartments from whole-body MR images is of high interest to examine metabolic conditions.
no code implementations • 21 Oct 2019 • Karim Armanious, Vijeth Kumar, Sherif Abdulatif, Tobias Hepp, Sergios Gatidis, Bin Yang
Local deformations in medical modalities are common phenomena due to a multitude of factors such as metallic implants or limited field of views in magnetic resonance imaging (MRI).
no code implementations • 14 Oct 2019 • Karim Armanious, Sherif Abdulatif, Anish Rao Bhaktharaguttu, Thomas Küstner, Tobias Hepp, Sergios Gatidis, Bin Yang
Individuals age differently depending on a multitude of different factors such as lifestyle, medical history and genetics.
no code implementations • 12 Oct 2019 • Karim Armanious, Aastha Tanwar, Sherif Abdulatif, Thomas Küstner, Sergios Gatidis, Bin Yang
Motion is one of the main sources for artifacts in magnetic resonance (MR) images.
no code implementations • 8 Mar 2019 • Karim Armanious, Chenming Jiang, Sherif Abdulatif, Thomas Küstner, Sergios Gatidis, Bin Yang
The proposed framework utilizes new non-adversarial cycle losses which direct the framework to minimize the textural and perceptual discrepancies in the translated images.
no code implementations • 15 Oct 2018 • Karim Armanious, Youssef Mecky, Sergios Gatidis, Bin Yang
Numerous factors could lead to partial deteriorations of medical images.
no code implementations • 17 Sep 2018 • Karim Armanious, Sergios Gatidis, Konstantin Nikolaou, Bin Yang, Thomas Küstner
Motion artifacts are a primary source of magnetic resonance (MR) image quality deterioration with strong repercussions on diagnostic performance.
no code implementations • 6 Aug 2018 • Benjamin Gutierrez-Becker, Sergios Gatidis, Daniel Gutmann, Annette Peters, Christopher Schlett Fabian Bamberg, Christian Wachinger
Morphological analysis of organs based on images is a key task in medical imaging computing.
no code implementations • 25 Jun 2018 • Thomas Küstner, Sergios Gatidis, Annika Liebgott, Martin Schwartz, Lukas Mauch, Petros Martirosian, Holger Schmidt, Nina F. Schwenzer, Konstantin Nikolaou, Fabian Bamberg, Bin Yang, Fritz Schick
Therefore, the assessment or the ensurance of sufficient image quality in an automated manner is of high interest.
no code implementations • 17 Jun 2018 • Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Konstantin Nikolaou, Sergios Gatidis, Bin Yang
Image-to-image translation is considered a new frontier in the field of medical image analysis, with numerous potential applications.