no code implementations • 19 Jan 2022 • Ashwin De Silva, Rahul Ramesh, Lyle Ungar, Marshall Hussain Shuler, Noah J. Cowan, Michael Platt, Chen Li, Leyla Isik, Seung-Eon Roh, Adam Charles, Archana Venkataraman, Brian Caffo, Javier J. How, Justus M Kebschull, John W. Krakauer, Maxim Bichuch, Kaleab Alemayehu Kinfu, Eva Yezerets, Dinesh Jayaraman, Jong M. Shin, Soledad Villar, Ian Phillips, Carey E. Priebe, Thomas Hartung, Michael I. Miller, Jayanta Dey, Ningyuan, Huang, Eric Eaton, Ralph Etienne-Cummings, Elizabeth L. Ogburn, Randal Burns, Onyema Osuagwu, Brett Mensh, Alysson R. Muotri, Julia Brown, Chris White, Weiwei Yang, Andrei A. Rusu, Timothy Verstynen, Konrad P. Kording, Pratik Chaudhari, Joshua T. Vogelstein
We conjecture that certain sequences of tasks are not retrospectively learnable (in which the data distribution is fixed), but are prospectively learnable (in which distributions may be dynamic), suggesting that prospective learning is more difficult in kind than retrospective learning.