1 code implementation • 30 Sep 2024 • Hyeongdon Moon, Richard Davis, Seyed Parsa Neshaei, Pierre Dillenbourg
Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students.
no code implementations • 7 Aug 2024 • Beatriz Borges, Negar Foroutan, Deniz Bayazit, Anna Sotnikova, Syrielle Montariol, Tanya Nazaretzky, Mohammadreza Banaei, Alireza Sakhaeirad, Philippe Servant, Seyed Parsa Neshaei, Jibril Frej, Angelika Romanou, Gail Weiss, Sepideh Mamooler, Zeming Chen, Simin Fan, Silin Gao, Mete Ismayilzada, Debjit Paul, Alexandre Schöpfer, Andrej Janchevski, Anja Tiede, Clarence Linden, Emanuele Troiani, Francesco Salvi, Freya Behrens, Giacomo Orsi, Giovanni Piccioli, Hadrien Sevel, Louis Coulon, Manuela Pineros-Rodriguez, Marin Bonnassies, Pierre Hellich, Puck van Gerwen, Sankalp Gambhir, Solal Pirelli, Thomas Blanchard, Timothée Callens, Toni Abi Aoun, Yannick Calvino Alonso, Yuri Cho, Alberto Chiappa, Antonio Sclocchi, Étienne Bruno, Florian Hofhammer, Gabriel Pescia, Geovani Rizk, Leello Dadi, Lucas Stoffl, Manoel Horta Ribeiro, Matthieu Bovel, Yueyang Pan, Aleksandra Radenovic, Alexandre Alahi, Alexander Mathis, Anne-Florence Bitbol, Boi Faltings, Cécile Hébert, Devis Tuia, François Maréchal, George Candea, Giuseppe Carleo, Jean-Cédric Chappelier, Nicolas Flammarion, Jean-Marie Fürbringer, Jean-Philippe Pellet, Karl Aberer, Lenka Zdeborová, Marcel Salathé, Martin Jaggi, Martin Rajman, Mathias Payer, Matthieu Wyart, Michael Gastpar, Michele Ceriotti, Ola Svensson, Olivier Lévêque, Paolo Ienne, Rachid Guerraoui, Robert West, Sanidhya Kashyap, Valerio Piazza, Viesturs Simanis, Viktor Kuncak, Volkan Cevher, Philippe Schwaller, Sacha Friedli, Patrick Jermann, Tanja Käser, Antoine Bosselut
We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses.
no code implementations • 21 Mar 2024 • Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum, Vipul Raheja, Hua Shen, Subhashini Venugopalan, Thiemo Wambsganss, David Zhou, Emad A. Alghamdi, Tal August, Avinash Bhat, Madiha Zahrah Choksi, Senjuti Dutta, Jin L. C. Guo, Md Naimul Hoque, Yewon Kim, Simon Knight, Seyed Parsa Neshaei, Agnia Sergeyuk, Antonette Shibani, Disha Shrivastava, Lila Shroff, Jessi Stark, Sarah Sterman, Sitong Wang, Antoine Bosselut, Daniel Buschek, Joseph Chee Chang, Sherol Chen, Max Kreminski, Joonsuk Park, Roy Pea, Eugenia H. Rho, Shannon Zejiang Shen, Pao Siangliulue
In our era of rapid technological advancement, the research landscape for writing assistants has become increasingly fragmented across various research communities.
no code implementations • 8 Mar 2024 • Seyed Parsa Neshaei, Yasaman Boreshban, Gholamreza Ghassem-Sani, Seyed Abolghasem Mirroshandel
In this paper, we explore the effect of quantization on the robustness of Transformer-based models.
1 code implementation • 29 Feb 2024 • Seyed Parsa Neshaei, Richard Lee Davis, Adam Hazimeh, Bojan Lazarevski, Pierre Dillenbourg, Tanja Käser
Recent work exploring the capabilities of pre-trained large language models (LLMs) has demonstrated their ability to act as general pattern machines by completing complex token sequences representing a wide array of tasks, including time-series prediction and robot control.
1 code implementation • 6 Nov 2023 • Thiemo Wambsganss, Xiaotian Su, Vinitra Swamy, Seyed Parsa Neshaei, Roman Rietsche, Tanja Käser
Our results demonstrate that there is no significant difference in gender bias between the resulting peer reviews of groups with and without LLM suggestions.