no code implementations • 31 Oct 2022 • Aman Alok, Rahul Gupta, Shankar Ananthakrishnan
Hypothesis rejection modules in both schemes reject/accept a hypothesis based on features drawn from the utterance directed to the SLU system, the associated SLU hypothesis and SLU confidence score.
1 code implementation • 2 Aug 2022 • Saleh Soltan, Shankar Ananthakrishnan, Jack FitzGerald, Rahul Gupta, Wael Hamza, Haidar Khan, Charith Peris, Stephen Rawls, Andy Rosenbaum, Anna Rumshisky, Chandana Satya Prakash, Mukund Sridhar, Fabian Triefenbach, Apurv Verma, Gokhan Tur, Prem Natarajan
In this work, we demonstrate that multilingual large-scale sequence-to-sequence (seq2seq) models, pre-trained on a mixture of denoising and Causal Language Modeling (CLM) tasks, are more efficient few-shot learners than decoder-only models on various tasks.
Ranked #14 on
Natural Language Inference
on CommitmentBank
no code implementations • 15 Jun 2022 • Jack FitzGerald, Shankar Ananthakrishnan, Konstantine Arkoudas, Davide Bernardi, Abhishek Bhagia, Claudio Delli Bovi, Jin Cao, Rakesh Chada, Amit Chauhan, Luoxin Chen, Anurag Dwarakanath, Satyam Dwivedi, Turan Gojayev, Karthik Gopalakrishnan, Thomas Gueudre, Dilek Hakkani-Tur, Wael Hamza, Jonathan Hueser, Kevin Martin Jose, Haidar Khan, Beiye Liu, Jianhua Lu, Alessandro Manzotti, Pradeep Natarajan, Karolina Owczarzak, Gokmen Oz, Enrico Palumbo, Charith Peris, Chandana Satya Prakash, Stephen Rawls, Andy Rosenbaum, Anjali Shenoy, Saleh Soltan, Mukund Harakere Sridhar, Liz Tan, Fabian Triefenbach, Pan Wei, Haiyang Yu, Shuai Zheng, Gokhan Tur, Prem Natarajan
We present results from a large-scale experiment on pretraining encoders with non-embedding parameter counts ranging from 700M to 9. 3B, their subsequent distillation into smaller models ranging from 17M-170M parameters, and their application to the Natural Language Understanding (NLU) component of a virtual assistant system.
Cross-Lingual Natural Language Inference
intent-classification
+5
no code implementations • 20 Jun 2019 • Rahul Gupta, Aman Alok, Shankar Ananthakrishnan
An OVA system consists of as many OVA models as the number of classes, providing the advantage of asynchrony, where each OVA model can be re-trained independent of other models.
no code implementations • 25 Sep 2018 • Chengwei Su, Rahul Gupta, Shankar Ananthakrishnan, Spyros Matsoukas
An ideal re-ranker will exhibit the following two properties: (a) it should prefer the most relevant hypothesis for the given input as the top hypothesis and, (b) the interpretation scores corresponding to each hypothesis produced by the re-ranker should be calibrated.
no code implementations • 29 Jun 2018 • Bo Xiao, Nicholas Monath, Shankar Ananthakrishnan, Abishek Ravi
We first binarize play durations to obtain implicit positive and negative affinity labels.