no code implementations • 13 Feb 2025 • Yung-Sung Chuang, Benjamin Cohen-Wang, Shannon Zejiang Shen, Zhaofeng Wu, Hu Xu, Xi Victoria Lin, James Glass, Shang-Wen Li, Wen-tau Yih
We introduce SelfCite, a novel self-supervised approach that aligns LLMs to generate high-quality, fine-grained, sentence-level citations for the statements in their generated responses.
no code implementations • 10 Feb 2025 • Amin Adibi, Xu Cao, Zongliang Ji, Jivat Neet Kaur, Winston Chen, Elizabeth Healey, Brighton Nuwagira, Wenqian Ye, Geoffrey Woollard, Maxwell A Xu, Hejie Cui, Johnny Xi, Trenton Chang, Vasiliki Bikia, Nicole Zhang, Ayush Noori, Yuan Xia, Md. Belal Hossain, Hanna A. Frank, Alina Peluso, Yuan Pu, Shannon Zejiang Shen, John Wu, Adibvafa Fallahpour, Sazan Mahbub, Ross Duncan, Yuwei Zhang, Yurui Cao, Zuheng Xu, Michael Craig, Rahul G. Krishnan, Rahmatollah Beheshti, James M. Rehg, Mohammad Ehsanul Karim, Megan Coffee, Leo Anthony Celi, Jason Alan Fries, Mohsen Sadatsafavi, Dennis Shung, Shannon McWeeney, Jessica Dafflon, Sarah Jabbour
The fourth Machine Learning for Health (ML4H) symposium was held in person on December 15th and 16th, 2024, in the traditional, ancestral, and unceded territories of the Musqueam, Squamish, and Tsleil-Waututh Nations in Vancouver, British Columbia, Canada.
1 code implementation • 10 Jun 2024 • David Wadden, Kejian Shi, Jacob Morrison, Aakanksha Naik, Shruti Singh, Nitzan Barzilay, Kyle Lo, Tom Hope, Luca Soldaini, Shannon Zejiang Shen, Doug Downey, Hannaneh Hajishirzi, Arman Cohan
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks covering five essential scientific literature understanding capabilities: information extraction, summarization, question answering, claim verification, and classification.
no code implementations • 21 Mar 2024 • Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum, Vipul Raheja, Hua Shen, Subhashini Venugopalan, Thiemo Wambsganss, David Zhou, Emad A. Alghamdi, Tal August, Avinash Bhat, Madiha Zahrah Choksi, Senjuti Dutta, Jin L. C. Guo, Md Naimul Hoque, Yewon Kim, Simon Knight, Seyed Parsa Neshaei, Agnia Sergeyuk, Antonette Shibani, Disha Shrivastava, Lila Shroff, Jessi Stark, Sarah Sterman, Sitong Wang, Antoine Bosselut, Daniel Buschek, Joseph Chee Chang, Sherol Chen, Max Kreminski, Joonsuk Park, Roy Pea, Eugenia H. Rho, Shannon Zejiang Shen, Pao Siangliulue
In our era of rapid technological advancement, the research landscape for writing assistants has become increasingly fragmented across various research communities.
1 code implementation • 6 Mar 2024 • Shannon Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, David Sontag
We propose a method to teach multiple large language models (LLM) to collaborate by interleaving their generations at the token level.
1 code implementation • 23 Feb 2024 • Stefan Hegselmann, Shannon Zejiang Shen, Florian Gierse, Monica Agrawal, David Sontag, Xiaoyi Jiang
In this work, we investigate the potential of large language models to generate patient summaries based on doctors' notes and study the effect of training data on the faithfulness and quality of the generated summaries.