no code implementations • ICON 2020 • Shantipriya Parida, Esau Villatoro-Tello, Sajit Kumar, Maël Fabien, Petr Motlicek
Language detection is considered a difficult task especially for similar languages, varieties, and dialects.
no code implementations • WAT 2022 • Shantipriya Parida, Subhadarshi Panda, Stig-Arne Grönroos, Mark Granroth-Wilding, Mika Koistinen
This paper provides the system description of “Silo NLP’s” submission to the Workshop on Asian Translation (WAT2022).
no code implementations • WAT 2022 • Toshiaki Nakazawa, Hideya Mino, Isao Goto, Raj Dabre, Shohei Higashiyama, Shantipriya Parida, Anoop Kunchukuttan, Makoto Morishita, Ondřej Bojar, Chenhui Chu, Akiko Eriguchi, Kaori Abe, Yusuke Oda, Sadao Kurohashi
This paper presents the results of the shared tasks from the 9th workshop on Asian translation (WAT2022).
no code implementations • ACL (WAT) 2021 • Toshiaki Nakazawa, Hideki Nakayama, Chenchen Ding, Raj Dabre, Shohei Higashiyama, Hideya Mino, Isao Goto, Win Pa Pa, Anoop Kunchukuttan, Shantipriya Parida, Ondřej Bojar, Chenhui Chu, Akiko Eriguchi, Kaori Abe, Yusuke Oda, Sadao Kurohashi
This paper presents the results of the shared tasks from the 8th workshop on Asian translation (WAT2021).
no code implementations • ACL (WAT) 2021 • Shantipriya Parida, Subhadarshi Panda, Ketan Kotwal, Amulya Ratna Dash, Satya Ranjan Dash, Yashvardhan Sharma, Petr Motlicek, Ondřej Bojar
Our submission tops in English→Malayalam Multimodal translation task (text-only translation, and Malayalam caption), and ranks second-best in English→Hindi Multimodal translation task (text-only translation, and Hindi caption).
no code implementations • ICON 2020 • Maël Fabien, Esau Villatoro-Tello, Petr Motlicek, Shantipriya Parida
Identifying the author of a given text can be useful in historical literature, plagiarism detection, or police investigations.
no code implementations • MMTLRL (RANLP) 2021 • Shantipriya Parida, Subhadarshi Panda, Satya Prakash Biswal, Ketan Kotwal, Arghyadeep Sen, Satya Ranjan Dash, Petr Motlicek
Multimodal Machine Translation (MMT) systems utilize additional information from other modalities beyond text to improve the quality of machine translation (MT).
no code implementations • NAACL (AmericasNLP) 2021 • Shantipriya Parida, Subhadarshi Panda, Amulya Dash, Esau Villatoro-Tello, A. Seza Doğruöz, Rosa M. Ortega-Mendoza, Amadeo Hernández, Yashvardhan Sharma, Petr Motlicek
This paper describes the team (“Tamalli”)’s submission to AmericasNLP2021 shared task on Open Machine Translation for low resource South American languages.
no code implementations • AACL (WAT) 2020 • Shantipriya Parida, Petr Motlicek, Amulya Ratna Dash, Satya Ranjan Dash, Debasish Kumar Mallick, Satya Prakash Biswal, Priyanka Pattnaik, Biranchi Narayan Nayak, Ondřej Bojar
We have participated in the English-Hindi Multimodal task and Indic task.
no code implementations • AACL (WAT) 2020 • Toshiaki Nakazawa, Hideki Nakayama, Chenchen Ding, Raj Dabre, Shohei Higashiyama, Hideya Mino, Isao Goto, Win Pa Pa, Anoop Kunchukuttan, Shantipriya Parida, Ondřej Bojar, Sadao Kurohashi
This paper presents the results of the shared tasks from the 7th workshop on Asian translation (WAT2020).
no code implementations • 21 May 2023 • Amit Kumar, Shantipriya Parida, Ajay Pratap, Anil Kumar Singh
One reason for this is the relative morphological richness of Indian languages, while another is that most of them fall into the extremely low resource or zero-shot categories.
1 code implementation • 2 Aug 2022 • Shantipriya Parida, Subhadarshi Panda, Stig-Arne Grönroos, Mark Granroth-Wilding, Mika Koistinen
This paper provides the system description of "Silo NLP's" submission to the Workshop on Asian Translation (WAT2022).
no code implementations • WILDRE (LREC) 2022 • Shantipriya Parida, Kalyanamalini Sahoo, Atul Kr. Ojha, Saraswati Sahoo, Satya Ranjan Dash, Bijayalaxmi Dash
This paper presents the first publicly available treebank of Odia, a morphologically rich low resource Indian language.
no code implementations • LREC 2022 • Idris Abdulmumin, Satya Ranjan Dash, Musa Abdullahi Dawud, Shantipriya Parida, Shamsuddeen Hassan Muhammad, Ibrahim Sa'id Ahmad, Subhadarshi Panda, Ondřej Bojar, Bashir Shehu Galadanci, Bello Shehu Bello
The Hausa Visual Genome is the first dataset of its kind and can be used for Hausa-English machine translation, multi-modal research, and image description, among various other natural language processing and generation tasks.
no code implementations • LREC 2020 • Shantipriya Parida, Satya Ranjan Dash, Ond{\v{r}}ej Bojar, Petr Motlicek, Priyanka Pattnaik, Debasish Kumar Mallick
The preparation of parallel corpora is a challenging task, particularly for languages that suffer from under-representation in the digital world.
no code implementations • WS 2019 • Shantipriya Parida, Ond{\v{r}}ej Bojar, Petr Motlicek
This paper describes the Idiap submission to WAT 2019 for the English-Hindi Multi-Modal Translation Task.
no code implementations • IJCNLP 2019 • Shantipriya Parida, Petr Motlicek
We propose an iterative data augmentation approach which uses synthetic data along with the real summarization data for the German language.
no code implementations • WS 2019 • Toshiaki Nakazawa, Nobushige Doi, Shohei Higashiyama, Chenchen Ding, Raj Dabre, Hideya Mino, Isao Goto, Win Pa Pa, Anoop Kunchukuttan, Yusuke Oda, Shantipriya Parida, Ond{\v{r}}ej Bojar, Sadao Kurohashi
This paper presents the results of the shared tasks from the 6th workshop on Asian translation (WAT2019) including Ja↔En, Ja↔Zh scientific paper translation subtasks, Ja↔En, Ja↔Ko, Ja↔En patent translation subtasks, Hi↔En, My↔En, Km↔En, Ta↔En mixed domain subtasks and Ru↔Ja news commentary translation task.
no code implementations • 21 Jul 2019 • Shantipriya Parida, Ondřej Bojar, Satya Ranjan Dash
We present ``Hindi Visual Genome'', a multimodal dataset consisting of text and images suitable for English-Hindi multimodal machine translation task and multimodal research.