1 code implementation • 13 Jan 2025 • Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, Furu Wei
Ultimately, MVoT establishes new possibilities for complex reasoning tasks where visual thinking can effectively complement verbal reasoning.
1 code implementation • 19 Dec 2024 • QiHao Zhao, Yangyu Huang, Tengchao Lv, Lei Cui, Qinzheng Sun, Shaoguang Mao, Xin Zhang, Ying Xin, Qiufeng Yin, Scarlett Li, Furu Wei
This benchmark reassesses LLMs' understanding of world knowledge by averting both unintentional and malicious data leakage.
1 code implementation • 21 Oct 2024 • Jinheng Wang, Hansong Zhou, Ting Song, Shaoguang Mao, Shuming Ma, Hongyu Wang, Yan Xia, Furu Wei
Recent advances in 1-bit Large Language Models (LLMs), such as BitNet and BitNet b1. 58, present a promising approach to enhancing the efficiency of LLMs in terms of speed and energy consumption.
1 code implementation • 14 Oct 2024 • Fangru Lin, Shaoguang Mao, Emanuele La Malfa, Valentin Hofmann, Adrian de Wynter, Xun Wang, Si-Qing Chen, Michael Wooldridge, Janet B. Pierrehumbert, Furu Wei
While benchmarks, including those designed for multiple languages, are often used as proxies to evaluate the performance of Large Language Models (LLMs), they tend to overlook the nuances of within-language variation, and thus fail to model the experience of speakers of non-standard dialects.
1 code implementation • 29 Sep 2024 • Nuowei Liu, Xinhao Chen, Hongyi Wu, Changzhi Sun, Man Lan, Yuanbin Wu, Xiaopeng Bai, Shaoguang Mao, Yan Xia
Existing rhetorical understanding and generation datasets or corpora primarily focus on single coarse-grained categories or fine-grained categories, neglecting the common interrelations between different rhetorical devices by treating them as independent sub-tasks.
no code implementations • 22 Jul 2024 • Dingyao Yu, Yang An, Wei Ye, Xiongfeng Xiao, Shaoguang Mao, Tao Ge, Shikun Zhang
Specifically, OCR/ASR-based data samples are fed into a well-calibrated CSC model trained on random replacement-based corpora and then filtered based on prediction confidence.
no code implementations • 8 Jul 2024 • Yadong Zhang, Shaoguang Mao, Wenshan Wu, Yan Xia, Tao Ge, Man Lan, Furu Wei
This paper introduces BI-Directional DEliberation Reasoning (BIDDER), a novel reasoning approach to enhance the decision rationality of language models.
no code implementations • 17 Jun 2024 • Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan Wu, Yan Xia, Haipeng Mi, Furu Wei
MRP represents a significant advancement in enabling LLMs to identify cognitive challenges across problems and leverage benefits across different reasoning approaches, enhancing their ability to handle diverse and complex problem domains efficiently.
1 code implementation • 4 Apr 2024 • Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, Furu Wei
Large language models (LLMs) have exhibited impressive performance in language comprehension and various reasoning tasks.
no code implementations • 1 Apr 2024 • Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu, Ting Song, Man Lan, Furu Wei
This paper presents a comprehensive survey of the current status and opportunities for Large Language Models (LLMs) in strategic reasoning, a sophisticated form of reasoning that necessitates understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
no code implementations • 2 Feb 2024 • Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Man Lan, Furu Wei
LLMs and LLM agents often struggle with strategic reasoning due to the absence of a reasoning framework that enables them to dynamically infer others' perspectives and adapt to changing environments.
no code implementations • 7 Jan 2024 • Wei Xia, Shaoguang Mao, Chanjing Zheng
The primary objective is to assess the capabilities and constraints of ChatGPT, a prominent representative of large language models, within the context of automated essay scoring.
1 code implementation • 6 Nov 2023 • Shaoguang Mao, Yuzhe Cai, Yan Xia, Wenshan Wu, Xun Wang, Fengyi Wang, Tao Ge, Furu Wei
This paper introduces Alympics (Olympics for Agents), a systematic simulation framework utilizing Large Language Model (LLM) agents for game theory research.
no code implementations • 12 Oct 2023 • Wang You, Wenshan Wu, Yaobo Liang, Shaoguang Mao, Chenfei Wu, Maosong Cao, Yuzhe Cai, Yiduo Guo, Yan Xia, Furu Wei, Nan Duan
In this paper, we propose a new framework called Evaluation-guided Iterative Plan Extraction for long-form narrative text generation (EIPE-text), which extracts plans from the corpus of narratives and utilizes the extracted plans to construct a better planner.
2 code implementations • 11 Jul 2023 • Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, Heng Ji
In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas.
no code implementations • 8 Jun 2023 • Zhiyi Wang, Shaoguang Mao, Wenshan Wu, Yan Xia, Yan Deng, Jonathan Tien
To leverage NLP models, speech input is first force-aligned with texts, and then pre-processed into a token sequence, including words and phrase break information.
no code implementations • 5 Jun 2023 • Yukang Liang, Kaitao Song, Shaoguang Mao, Huiqiang Jiang, Luna Qiu, Yuqing Yang, Dongsheng Li, Linli Xu, Lili Qiu
Pronunciation assessment is a major challenge in the computer-aided pronunciation training system, especially at the word (phoneme)-level.
1 code implementation • 17 May 2023 • Chenshuo Wang, Shaoguang Mao, Tao Ge, Wenshan Wu, Xun Wang, Yan Xia, Jonathan Tien, Dongyan Zhao
The training dataset comprises over 3. 7 million sentences and 12. 7 million suggestions generated through rules.
2 code implementations • 17 Apr 2023 • Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge, Chenfei Wu, Wang You, Ting Song, Yan Xia, Jonathan Tien, Nan Duan, Furu Wei
By introducing this framework, we aim to bridge the gap between humans and LLMs, enabling more effective and efficient utilization of LLMs for complex tasks.
no code implementations • 29 Mar 2023 • Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji, Shaoguang Mao, Yun Wang, Linjun Shou, Ming Gong, Nan Duan
On the other hand, there are also many existing models and systems (symbolic-based or neural-based) that can do some domain-specific tasks very well.
no code implementations • NeurIPS 2023 • Tao Ge, Jing Hu, Li Dong, Shaoguang Mao, Yan Xia, Xun Wang, Si-Qing Chen, Furu Wei
We propose eXtensible Prompt (X-Prompt) for prompting a large language model (LLM) beyond natural language (NL).
no code implementations • 28 Oct 2022 • Zhiyi Wang, Shaoguang Mao, Wenshan Wu, Yan Xia
The token sequence is then fed into the pre-training and fine-tuning pipeline.
no code implementations • 6 Jul 2022 • Bin Su, Shaoguang Mao, Frank Soong, Zhiyong Wu
The ORARS addresses the MOS prediction problem by pairing a test sample with each of the pre-scored anchored reference samples.
no code implementations • 14 Oct 2021 • Wenxuan Ye, Shaoguang Mao, Frank Soong, Wenshan Wu, Yan Xia, Jonathan Tien, Zhiyong Wu
These embeddings, when used as implicit phonetic supplementary information, can alleviate the data shortage of explicit phoneme annotations.
no code implementations • 26 Oct 2020 • Bin Su, Shaoguang Mao, Frank Soong, Yan Xia, Jonathan Tien, Zhiyong Wu
Traditional speech pronunciation assessment, based on the Goodness of Pronunciation (GOP) algorithm, has some weakness in assessing a speech utterance: 1) Phoneme GOP scores cannot be easily translated into a sentence score with a simple average for effective assessment; 2) The rank ordering information has not been well exploited in GOP scoring for delivering a robust assessment and correlate well with a human rater's evaluations.