no code implementations • 21 Apr 2025 • Cosmin Safta, Reese E. Jones, Ravi G. Patel, Raelynn Wonnacot, Dan S. Bolintineanu, Craig M. Hamel, Sharlotte L. B. Kramer
We propose a scalable, approximate inference hypernetwork framework for a general model of history-dependent processes.
no code implementations • 27 Sep 2022 • Ruben Villarreal, Nikolaos N. Vlassis, Nhon N. Phan, Tommie A. Catanach, Reese E. Jones, Nathaniel A. Trask, Sharlotte L. B. Kramer, WaiChing Sun
This new data leads to a Bayesian update of the parameters by the KF, which is used to enhance the state representation.
no code implementations • 30 Mar 2022 • Craig M. Hamel, Kevin N. Long, Sharlotte L. B. Kramer
The calibration of solid constitutive models with full-field experimental data is a long-standing challenge, especially in materials which undergo large deformation.