no code implementations • CVPR 2024 • Yunhao Ge, Yihe Tang, Jiashu Xu, Cem Gokmen, Chengshu Li, Wensi Ai, Benjamin Jose Martinez, Arman Aydin, Mona Anvari, Ayush K Chakravarthy, Hong-Xing Yu, Josiah Wong, Sanjana Srivastava, Sharon Lee, Shengxin Zha, Laurent Itti, Yunzhu Li, Roberto Martín-Martín, Miao Liu, Pengchuan Zhang, Ruohan Zhang, Li Fei-Fei, Jiajun Wu
We introduce the BEHAVIOR Vision Suite (BVS), a set of tools and assets to generate fully customized synthetic data for systematic evaluation of computer vision models, based on the newly developed embodied AI benchmark, BEHAVIOR-1K.
no code implementations • 14 Mar 2024 • Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-Martín, Chen Wang, Gabrael Levine, Wensi Ai, Benjamin Martinez, Hang Yin, Michael Lingelbach, Minjune Hwang, Ayano Hiranaka, Sujay Garlanka, Arman Aydin, Sharon Lee, Jiankai Sun, Mona Anvari, Manasi Sharma, Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan Lou, Caleb R Matthews, Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Yunzhu Li, Silvio Savarese, Hyowon Gweon, C. Karen Liu, Jiajun Wu, Li Fei-Fei
We present BEHAVIOR-1K, a comprehensive simulation benchmark for human-centered robotics.
1 code implementation • 6 Dec 2023 • Sharon Lee, Yunzhi Zhang, Shangzhe Wu, Jiajun Wu
To encourage better disentanglement of different concept encoders, we anchor the concept embeddings to a set of text embeddings obtained from a pre-trained Visual Question Answering (VQA) model.
no code implementations • 2 Nov 2023 • Ruohan Zhang, Sharon Lee, Minjune Hwang, Ayano Hiranaka, Chen Wang, Wensi Ai, Jin Jie Ryan Tan, Shreya Gupta, Yilun Hao, Gabrael Levine, Ruohan Gao, Anthony Norcia, Li Fei-Fei, Jiajun Wu
We present Neural Signal Operated Intelligent Robots (NOIR), a general-purpose, intelligent brain-robot interface system that enables humans to command robots to perform everyday activities through brain signals.
no code implementations • 28 Jul 2023 • Ayano Hiranaka, Minjune Hwang, Sharon Lee, Chen Wang, Li Fei-Fei, Jiajun Wu, Ruohan Zhang
By combining them, SEED reduces the human effort required in RLHF and increases safety in training robot manipulation with RL in real-world settings.
no code implementations • 31 May 2013 • Saumyadipta Pyne, Kui Wang, Jonathan Irish, Pablo Tamayo, Marc-Danie Nazaire, Tarn Duong, Sharon Lee, Shu-Kay Ng, David Hafler, Ronald Levy, Garry Nolan, Jill Mesirov, Geoffrey J. McLachlan
Simultaneously, JCM fits a random-effects model to construct an overall batch template -- used for registering populations across samples, and classifying new samples.