Search Results for author: Shell Xu Hu

Found 8 papers, 5 papers with code

Feed-Forward Source-Free Latent Domain Adaptation via Cross-Attention

no code implementations15 Jul 2022 Ondrej Bohdal, Da Li, Shell Xu Hu, Timothy Hospedales

We study the highly practical but comparatively under-studied problem of latent-domain adaptation, where a source model should be adapted to a target dataset that contains a mixture of unlabelled domain-relevant and domain-irrelevant examples.

Domain Adaptation

Compressing Features for Learning with Noisy Labels

1 code implementation27 Jun 2022 Yingyi Chen, Shell Xu Hu, Xi Shen, Chunrong Ai, Johan A. K. Suykens

This decomposition provides three insights: (i) it shows that over-fitting is indeed an issue for learning with noisy labels; (ii) through an information bottleneck formulation, it explains why the proposed feature compression helps in combating label noise; (iii) it gives explanations on the performance boost brought by incorporating compression regularization into Co-teaching.

Ranked #5 on Image Classification on Clothing1M (using extra training data)

Feature Importance Inductive Bias +1

Fisher SAM: Information Geometry and Sharpness Aware Minimisation

no code implementations10 Jun 2022 Minyoung Kim, Da Li, Shell Xu Hu, Timothy M. Hospedales

Recent sharpness-aware minimisation (SAM) is known to find flat minima which is beneficial for better generalisation with improved robustness.

Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference

1 code implementation CVPR 2022 Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim, Timothy M. Hospedales

To this end, we explore few-shot learning from the perspective of neural network architecture, as well as a three stage pipeline of network updates under different data supplies, where unsupervised external data is considered for pre-training, base categories are used to simulate few-shot tasks for meta-training, and the scarcely labelled data of an novel task is taken for fine-tuning.

Few-Shot Image Classification Transfer Learning

Empirical Bayes Transductive Meta-Learning with Synthetic Gradients

2 code implementations ICLR 2020 Shell Xu Hu, Pablo G. Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D. Lawrence, Andreas Damianou

The evidence lower bound of the marginal log-likelihood of empirical Bayes decomposes as a sum of local KL divergences between the variational posterior and the true posterior on the query set of each task.

Few-Shot Image Classification Meta-Learning +3

Variational Information Distillation for Knowledge Transfer

2 code implementations CVPR 2019 Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D. Lawrence, Zhenwen Dai

We further demonstrate the strength of our method on knowledge transfer across heterogeneous network architectures by transferring knowledge from a convolutional neural network (CNN) to a multi-layer perceptron (MLP) on CIFAR-10.

Knowledge Distillation Transfer Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.