no code implementations • Findings (NAACL) 2022 • Yaqing Wang, Xin Tian, Haoyi Xiong, Yueyang Li, Zeyu Chen, Sheng Guo, Dejing Dou
In this work, we show that Relation Graph augmented Learning (RGL) can improve the performance of few-shot natural language understanding tasks.
no code implementations • 11 Apr 2023 • Yao Teng, Haisong Liu, Sheng Guo, LiMin Wang
Most of these detectors are trained with one-to-many label assignment strategies.
1 code implementation • CVPR 2023 • Hanlin Wang, Yilu Wu, Sheng Guo, LiMin Wang
In this sense, we model the whole intermediate action sequence distribution with a diffusion model (PDPP), and thus transform the planning problem to a sampling process from this distribution.
no code implementations • 22 Feb 2023 • YuanYuan Chen, Zichen Chen, Sheng Guo, Yansong Zhao, Zelei Liu, Pengcheng Wu, Chengyi Yang, Zengxiang Li, Han Yu
Artificial intelligence (AI)-empowered industrial fault diagnostics is important in ensuring the safe operation of industrial applications.
1 code implementation • 13 Feb 2023 • Jiange Yang, Sheng Guo, Gangshan Wu, LiMin Wang
Our CoMAE presents a curriculum learning strategy to unify the two popular self-supervised representation learning algorithms: contrastive learning and masked image modeling.
no code implementations • CVPR 2023 • Zifan Shi, Yujun Shen, Yinghao Xu, Sida Peng, Yiyi Liao, Sheng Guo, Qifeng Chen, Dit-yan Yeung
Existing methods for 3D-aware image synthesis largely depend on the 3D pose distribution pre-estimated on the training set.
no code implementations • 17 Nov 2022 • Sheng Guo, Zengxiang Li, Hui Liu, Shubao Zhao, Cheng Hao Jin
Intelligent fault diagnosis is essential to safe operation of machinery.
no code implementations • 6 Jun 2022 • YiWen Chen, Xue Li, Sheng Guo, Xian Yao Ng, Marcelo Ang
Reinforcement learning has shown a wide usage in robotics tasks, such as insertion and grasping.
1 code implementation • CVPR 2022 • Sheng Guo, Zihua Xiong, Yujie Zhong, LiMin Wang, Xiaobo Guo, Bing Han, Weilin Huang
In this paper, we present a new cross-architecture contrastive learning (CACL) framework for self-supervised video representation learning.
no code implementations • 12 May 2022 • YiWen Chen, Sheng Guo, Zedong Zhang, Lei Zhou, Xian Yao Ng, Marcelo H. Ang Jr
Previous methods achieved good performance on such manipulation tasks.
1 code implementation • 18 Apr 2022 • Wujiang Xu, Runzhong Wang, Xiaobo Guo, Shaoshuai Li, Qiongxu Ma, Yunan Zhao, Sheng Guo, Zhenfeng Zhu, Junchi Yan
However, the optimal video summaries need to reflect the most valuable keyframe with its own information, and one with semantic power of the whole content.
2 code implementations • CVPR 2022 • Ziteng Gao, LiMin Wang, Bing Han, Sheng Guo
The recent query-based object detectors break this convention by decoding image features with a set of learnable queries.
no code implementations • 7 Jan 2022 • Feng Wei, Zhenbo Chen, Zhenghong Hao, Fengxin Yang, Hua Wei, Bing Han, Sheng Guo
To make DCSC fully utilize the limited known intents, we propose a two-stage training procedure for DCSC, in which DCSC will be trained on both labeled samples and unlabeled samples, and achieve better text representation and clustering performance.
1 code implementation • 2 Dec 2021 • Zelu Deng, Yujie Zhong, Sheng Guo, Weilin Huang
This work aims at improving instance retrieval with self-supervision.
1 code implementation • 24 Oct 2021 • Zhenxi Zhu, LiMin Wang, Sheng Guo, Gangshan Wu
In this paper, we aim to present an in-depth study on few-shot video classification by making three contributions.
2 code implementations • 28 Jul 2021 • Qiufu Li, Linlin Shen, Sheng Guo, Zhihui Lai
We firstly propose general DWT and inverse DWT (IDWT) layers applicable to various orthogonal and biorthogonal discrete wavelets like Haar, Daubechies, and Cohen, etc., and then design wavelet integrated CNNs (WaveCNets) by integrating DWT into the commonly used CNNs (VGG, ResNets, and DenseNet).
no code implementations • 9 Jul 2021 • Haoxian Tan, Sheng Guo, Yujie Zhong, Matthew R. Scott, Weilin Huang
In this paper, we propose a conceptually simple yet efficient method to bridge these two paradigms, referred as Mutually-aware Sub-Graphs Differentiable Architecture Search (MSG-DAS).
1 code implementation • 11 Jan 2021 • Guanting Liu, Yujie Zhong, Sheng Guo, Matthew R. Scott, Weilin Huang
To overcome this limitation, in this paper, we propose a Hierarchical Differentiable Architecture Search (H-DAS) that performs architecture search both at the cell level and at the stage level.
1 code implementation • ECCV 2020 • Yujie Zhong, Zelu Deng, Sheng Guo, Matthew R. Scott, Weilin Huang
FAD consists of a designed search space and an efficient architecture search algorithm.
1 code implementation • CVPR 2020 • Qiufu Li, Linlin Shen, Sheng Guo, Zhihui Lai
The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets.
1 code implementation • ACL 2020 • Chulun Zhou, Liang-Yu Chen, Jiachen Liu, Xinyan Xiao, Jinsong Su, Sheng Guo, Hua Wu
Unsupervised style transfer aims to change the style of an input sentence while preserving its original content without using parallel training data.
no code implementations • ICLR 2020 • Shiwen Zhang, Sheng Guo, Weilin Huang, Matthew R. Scott, Li-Min Wang
Most existing 3D CNN structures for video representation learning are clip-based methods, and do not consider video-level temporal evolution of spatio-temporal features.
no code implementations • 18 Feb 2020 • Shiwen Zhang, Sheng Guo, Li-Min Wang, Weilin Huang, Matthew R. Scott
We design a three-branch architecture consisting of a main branch for action recognition, and two auxiliary branches for human parsing and scene recognition which allow the model to encode the knowledge of human and scene for action recognition.
1 code implementation • 18 Feb 2020 • Shiwen Zhang, Sheng Guo, Weilin Huang, Matthew R. Scott, Li-Min Wang
Most existing 3D CNNs for video representation learning are clip-based methods, and thus do not consider video-level temporal evolution of spatio-temporal features.
no code implementations • ICCV 2019 • Weifeng Ge, Sheng Guo, Weilin Huang, Matthew R. Scott
Weakly-supervised instance segmentation aims to detect and segment object instances precisely, given imagelevel labels only.
Ranked #7 on
Image-level Supervised Instance Segmentation
on PASCAL VOC 2012 val
(using extra training data)
General Classification
Image-level Supervised Instance Segmentation
+5
1 code implementation • 13 Jun 2019 • Sheng Guo, Weilin Huang, Xiao Zhang, Prasanna Srikhanta, Yin Cui, Yuan Li, Matthew R. Scott, Hartwig Adam, Serge Belongie
The dataset is constructed from over one million fashion images with a label space that includes 8 groups of 228 fine-grained attributes in total.
1 code implementation • 5 Nov 2018 • Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze
This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.
2 code implementations • ECCV 2018 • Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R. Scott, Dinglong Huang
We present a simple yet efficient approach capable of training deep neural networks on large-scale weakly-supervised web images, which are crawled raw from the Internet by using text queries, without any human annotation.
Ranked #1 on
Image Classification
on Clothing1M (using clean data)
(using extra training data)
2 code implementations • 4 Oct 2016 • Limin Wang, Sheng Guo, Weilin Huang, Yuanjun Xiong, Yu Qiao
Convolutional Neural Networks (CNNs) have made remarkable progress on scene recognition, partially due to these recent large-scale scene datasets, such as the Places and Places2.
no code implementations • 27 Jan 2016 • Sheng Guo, Weilin Huang, Li-Min Wang, Yu Qiao
Secondly, we propose a new Local Convolutional Supervision (LCS) layer to enhance the local structure of the image by directly propagating the label information to the convolutional layers.
no code implementations • 14 Oct 2015 • Limin Wang, Zhe Wang, Sheng Guo, Yu Qiao
Event recognition from still images is one of the most important problems for image understanding.
2 code implementations • 7 Aug 2015 • Limin Wang, Sheng Guo, Weilin Huang, Yu Qiao
We verify the performance of trained Places205-VGGNet models on three datasets: MIT67, SUN397, and Places205.
no code implementations • 3 Aug 2015 • Sheng Guo, Weilin Huang, Yu Qiao
Our descriptor enriches local image representation with both color and contrast information.