no code implementations • 8 Jul 2022 • Zhengang Li, Sheng Lin, Shan Liu, Songnan Li, Xue Lin, Wei Wang, Wei Jiang
Recently, high-quality video conferencing with fewer transmission bits has become a very hot and challenging problem.
no code implementations • EMNLP 2021 • Jieren Deng, Chenghong Wang, Xianrui Meng, Yijue Wang, Ji Li, Sheng Lin, Shuo Han, Fei Miao, Sanguthevar Rajasekaran, Caiwen Ding
In this work, we consider the problem of designing secure and efficient federated learning (FL) frameworks.
no code implementations • 6 Jul 2021 • Zhiyu Chen, Zhanghao Yu, Qing Jin, Yan He, Jingyu Wang, Sheng Lin, Dai Li, Yanzhi Wang, Kaiyuan Yang
A compact, accurate, and bitwidth-programmable in-memory computing (IMC) static random-access memory (SRAM) macro, named CAP-RAM, is presented for energy-efficient convolutional neural network (CNN) inference.
no code implementations • 16 Jun 2021 • Geng Yuan, Payman Behnam, Zhengang Li, Ali Shafiee, Sheng Lin, Xiaolong Ma, Hang Liu, Xuehai Qian, Mahdi Nazm Bojnordi, Yanzhi Wang, Caiwen Ding
With weights stored in the ReRAM crossbar cells as conductance, when the input vector is applied to word lines, the matrix-vector multiplication results can be generated as the current in bit lines.
no code implementations • 15 Jun 2021 • Sheng Lin, Wei Jiang, Wei Wang, Kaidi Xu, Yanzhi Wang, Shan Liu, Songnan Li
Compressing Deep Neural Network (DNN) models to alleviate the storage and computation requirements is essential for practical applications, especially for resource limited devices.
no code implementations • 3 Sep 2020 • Sheng Lin, Chenghong Wang, Hongjia Li, Jieren Deng, Yanzhi Wang, Caiwen Ding
Nowadays, Deep Neural Networks are widely applied to various domains.
no code implementations • 19 Feb 2020 • Peiyan Dong, Siyue Wang, Wei Niu, Chengming Zhang, Sheng Lin, Zhengang Li, Yifan Gong, Bin Ren, Xue Lin, Yanzhi Wang, Dingwen Tao
Recurrent neural networks (RNNs) based automatic speech recognition has nowadays become prevalent on mobile devices such as smart phones.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • ECCV 2020 • Xiaolong Ma, Wei Niu, Tianyun Zhang, Sijia Liu, Sheng Lin, Hongjia Li, Xiang Chen, Jian Tang, Kaisheng Ma, Bin Ren, Yanzhi Wang
Weight pruning has been widely acknowledged as a straightforward and effective method to eliminate redundancy in Deep Neural Networks (DNN), thereby achieving acceleration on various platforms.
no code implementations • 1 Jan 2020 • Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi Wang, Bin Ren
Weight pruning of DNNs is proposed, but existing schemes represent two extremes in the design space: non-structured pruning is fine-grained, accurate, but not hardware friendly; structured pruning is coarse-grained, hardware-efficient, but with higher accuracy loss.
no code implementations • 24 Nov 2019 • Geng Yuan, Xiaolong Ma, Sheng Lin, Zhengang Li, Caiwen Ding
Thus, the footprint and power consumption of SOT-MRAM PIM can be reduced, while increasing the overall system throughput at the meantime, making our proposed ADMM-based SOT-MRAM PIM more energy efficiency and suitable for embedded systems or IoT devices.
no code implementations • 19 Nov 2019 • Ao Ren, Tao Zhang, Yuhao Wang, Sheng Lin, Peiyan Dong, Yen-Kuang Chen, Yuan Xie, Yanzhi Wang
As a further optimization, we propose a density-adaptive regular-block (DARB) pruning that outperforms prior structured pruning work with high pruning ratio and decoding efficiency.
no code implementations • 4 Nov 2019 • Hongjia Li, Sheng Lin, Ning Liu, Caiwen Ding, Yanzhi Wang
Deep neural networks (DNNs) have been expanded into medical fields and triggered the revolution of some medical applications by extracting complex features and achieving high accuracy and performance, etc.
2 code implementations • IJCNLP 2019 • Xiyuan Yang, Xiaotao Gu, Sheng Lin, Siliang Tang, Yueting Zhuang, Fei Wu, Zhigang Chen, Guoping Hu, Xiang Ren
Despite of the recent success of collective entity linking (EL) methods, these "global" inference methods may yield sub-optimal results when the "all-mention coherence" assumption breaks, and often suffer from high computational cost at the inference stage, due to the complex search space.
Ranked #5 on
Entity Disambiguation
on AIDA-CoNLL
no code implementations • 29 Aug 2019 • Geng Yuan, Xiaolong Ma, Caiwen Ding, Sheng Lin, Tianyun Zhang, Zeinab S. Jalali, Yilong Zhao, Li Jiang, Sucheta Soundarajan, Yanzhi Wang
Memristor-based weight pruning and weight quantization have been seperately investigated and proven effectiveness in reducing area and power consumption compared to the original DNN model.
no code implementations • 27 Aug 2019 • Xiaolong Ma, Geng Yuan, Sheng Lin, Caiwen Ding, Fuxun Yu, Tao Liu, Wujie Wen, Xiang Chen, Yanzhi Wang
To mitigate the challenges, the memristor crossbar array has emerged as an intrinsically suitable matrix computation and low-power acceleration framework for DNN applications.
no code implementations • 3 Jul 2019 • Xiaolong Ma, Sheng Lin, Shaokai Ye, Zhezhi He, Linfeng Zhang, Geng Yuan, Sia Huat Tan, Zhengang Li, Deliang Fan, Xuehai Qian, Xue Lin, Kaisheng Ma, Yanzhi Wang
Based on the proposed comparison framework, with the same accuracy and quantization, the results show that non-structrued pruning is not competitive in terms of both storage and computation efficiency.
1 code implementation • ACL 2019 • Sheng Lin, Luye Zheng, Bo Chen, Siliang Tang, Yueting Zhuang, Fei Wu, Zhigang Chen, Guoping Hu, Xiang Ren
Fine-grained Entity Typing is a tough task which suffers from noise samples extracted from distant supervision.
no code implementations • 2 May 2019 • Sheng Lin, Xiaolong Ma, Shaokai Ye, Geng Yuan, Kaisheng Ma, Yanzhi Wang
Weight quantization is one of the most important techniques of Deep Neural Networks (DNNs) model compression method.
no code implementations • 30 Apr 2019 • Xiaolong Ma, Geng Yuan, Sheng Lin, Zhengang Li, Hao Sun, Yanzhi Wang
The state-of-art DNN structures involve high computation and great demand for memory storage which pose intensive challenge on DNN framework resources.
2 code implementations • 23 Mar 2019 • Shaokai Ye, Xiaoyu Feng, Tianyun Zhang, Xiaolong Ma, Sheng Lin, Zhengang Li, Kaidi Xu, Wujie Wen, Sijia Liu, Jian Tang, Makan Fardad, Xue Lin, Yongpan Liu, Yanzhi Wang
A recent work developed a systematic frame-work of DNN weight pruning using the advanced optimization technique ADMM (Alternating Direction Methods of Multipliers), achieving one of state-of-art in weight pruning results.
no code implementations • 11 Apr 2018 • Ziyi Zhao, Krittaphat Pugdeethosapol, Sheng Lin, Zhe Li, Caiwen Ding, Yanzhi Wang, Qinru Qiu
The topic modeling discovers the latent topic probability of the given text documents.
no code implementations • 13 Dec 2017 • Sheng Lin, Ning Liu, Mahdi Nazemi, Hongjia Li, Caiwen Ding, Yanzhi Wang, Massoud Pedram
The large model size of DNNs, while providing excellent accuracy, also burdens the embedded platforms with intensive computation and storage.
no code implementations • 13 Mar 2017 • Ning Liu, Zhe Li, Zhiyuan Xu, Jielong Xu, Sheng Lin, Qinru Qiu, Jian Tang, Yanzhi Wang
Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system.