1 code implementation • 8 Nov 2022 • Hao Peng, Xiaozhi Wang, Shengding Hu, Hailong Jin, Lei Hou, Juanzi Li, Zhiyuan Liu, Qun Liu
We believe this is a critical bottleneck for realizing human-like cognition in PLMs.
1 code implementation • NIPS 2022 • Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu, Maosong Sun
Generally, DT methods exquisitely design delta modules (DT modules) which could be applied to arbitrary fine-grained positions inside PTMs.
no code implementations • 15 Jun 2022 • Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu, Maosong Sun
The searched structures preserve more than 99\% fine-tuning performance with 0. 01\% trainable parameters.
no code implementations • 26 Mar 2022 • Sha Yuan, Hanyu Zhao, Shuai Zhao, Jiahong Leng, Yangxiao Liang, Xiaozhi Wang, Jifan Yu, Xin Lv, Zhou Shao, Jiaao He, Yankai Lin, Xu Han, Zhenghao Liu, Ning Ding, Yongming Rao, Yizhao Gao, Liang Zhang, Ming Ding, Cong Fang, Yisen Wang, Mingsheng Long, Jing Zhang, Yinpeng Dong, Tianyu Pang, Peng Cui, Lingxiao Huang, Zheng Liang, HuaWei Shen, HUI ZHANG, Quanshi Zhang, Qingxiu Dong, Zhixing Tan, Mingxuan Wang, Shuo Wang, Long Zhou, Haoran Li, Junwei Bao, Yingwei Pan, Weinan Zhang, Zhou Yu, Rui Yan, Chence Shi, Minghao Xu, Zuobai Zhang, Guoqiang Wang, Xiang Pan, Mengjie Li, Xiaoyu Chu, Zijun Yao, Fangwei Zhu, Shulin Cao, Weicheng Xue, Zixuan Ma, Zhengyan Zhang, Shengding Hu, Yujia Qin, Chaojun Xiao, Zheni Zeng, Ganqu Cui, Weize Chen, Weilin Zhao, Yuan YAO, Peng Li, Wenzhao Zheng, Wenliang Zhao, Ziyi Wang, Borui Zhang, Nanyi Fei, Anwen Hu, Zenan Ling, Haoyang Li, Boxi Cao, Xianpei Han, Weidong Zhan, Baobao Chang, Hao Sun, Jiawen Deng, Chujie Zheng, Juanzi Li, Lei Hou, Xigang Cao, Jidong Zhai, Zhiyuan Liu, Maosong Sun, Jiwen Lu, Zhiwu Lu, Qin Jin, Ruihua Song, Ji-Rong Wen, Zhouchen Lin, LiWei Wang, Hang Su, Jun Zhu, Zhifang Sui, Jiajun Zhang, Yang Liu, Xiaodong He, Minlie Huang, Jian Tang, Jie Tang
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm.
1 code implementation • ACL 2022 • Ganqu Cui, Shengding Hu, Ning Ding, Longtao Huang, Zhiyuan Liu
However, manual verbalizers heavily depend on domain-specific prior knowledge and human efforts, while finding appropriate label words automatically still remains challenging. In this work, we propose the prototypical verbalizer (ProtoVerb) which is built directly from training data.
no code implementations • 14 Mar 2022 • Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei Chen, Yang Liu, Jie Tang, Juanzi Li, Maosong Sun
This necessitates a new branch of research focusing on the parameter-efficient adaptation of PLMs, dubbed as delta tuning in this paper.
1 code implementation • ACL 2022 • Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun
Prompt-learning has become a new paradigm in modern natural language processing, which directly adapts pre-trained language models (PLMs) to $cloze$-style prediction, autoregressive modeling, or sequence to sequence generation, resulting in promising performances on various tasks.
2 code implementations • ACL 2022 • Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Jingang Wang, Juanzi Li, Wei Wu, Maosong Sun
Tuning pre-trained language models (PLMs) with task-specific prompts has been a promising approach for text classification.
1 code implementation • NeurIPS 2020 • Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan Liu, Jian Tang
Graph neural networks (GNNs) have been attracting increasing popularity due to their simplicity and effectiveness in a variety of fields.
1 code implementation • Findings (ACL) 2021 • Jie Zhou, Shengding Hu, Xin Lv, Cheng Yang, Zhiyuan Liu, Wei Xu, Jie Jiang, Juanzi Li, Maosong Sun
Based on the datasets, we propose novel tasks such as multi-hop knowledge abstraction (MKA), multi-hop knowledge concretization (MKC) and then design a comprehensive benchmark.
no code implementations • 25 Sep 2019 • Shengding Hu, Meng Qu, Zhiyuan Liu, Jian Tang
Moreover, we also studied how to learn a universal policy for labeling nodes on graphs with multiple training graphs and then transfer the learned policy to unseen graphs.
5 code implementations • 20 Dec 2018 • Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, LiFeng Wang, Changcheng Li, Maosong Sun
Lots of learning tasks require dealing with graph data which contains rich relation information among elements.