no code implementations • 20 Dec 2021 • Eser Aygün, Laurent Orseau, Ankit Anand, Xavier Glorot, Vlad Firoiu, Lei M. Zhang, Doina Precup, Shibl Mourad
Traditional automated theorem provers for first-order logic depend on speed-optimized search and many handcrafted heuristics that are designed to work best over a wide range of domains.
no code implementations • NeurIPS 2019 • André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel Toyama, Jonathan Hunt, Shibl Mourad, David Silver, Doina Precup
Building on this insight and on previous results on transfer learning, we show how to approximate options whose cumulants are linear combinations of the cumulants of known options.
2 code implementations • 27 May 2021 • Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali Ahmed, Tyler Jackson, Shibl Mourad, Doina Precup
We introduce AndroidEnv, an open-source platform for Reinforcement Learning (RL) research built on top of the Android ecosystem.
no code implementations • 5 Mar 2021 • Vlad Firoiu, Eser Aygun, Ankit Anand, Zafarali Ahmed, Xavier Glorot, Laurent Orseau, Lei Zhang, Doina Precup, Shibl Mourad
A major challenge in applying machine learning to automated theorem proving is the scarcity of training data, which is a key ingredient in training successful deep learning models.
no code implementations • 19 Jun 2020 • Eser Aygün, Zafarali Ahmed, Ankit Anand, Vlad Firoiu, Xavier Glorot, Laurent Orseau, Doina Precup, Shibl Mourad
A major challenge in applying machine learning to automated theorem proving is the scarcity of training data, which is a key ingredient in training successful deep learning models.
no code implementations • 12 Dec 2019 • Olivier Tieleman, Angeliki Lazaridou, Shibl Mourad, Charles Blundell, Doina Precup
Motivated by theories of language and communication that explain why communities with large numbers of speakers have, on average, simpler languages with more regularity, we cast the representation learning problem in terms of learning to communicate.
1 code implementation • 1 Feb 2019 • Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G. Bellemare, Michael Bowling
From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making.
no code implementations • 16 Nov 2018 • Tom Schaul, Hado van Hasselt, Joseph Modayil, Martha White, Adam White, Pierre-Luc Bacon, Jean Harb, Shibl Mourad, Marc Bellemare, Doina Precup
We want to make progress toward artificial general intelligence, namely general-purpose agents that autonomously learn how to competently act in complex environments.