Search Results for author: Shih-Chieh Hsu

Found 22 papers, 10 papers with code

Low Latency Transformer Inference on FPGAs for Physics Applications with hls4ml

no code implementations8 Sep 2024 Zhixing Jiang, Dennis Yin, Yihui Chen, Elham E Khoda, Scott Hauck, Shih-Chieh Hsu, Ekaterina Govorkova, Philip Harris, Vladimir Loncar, Eric A. Moreno

This study presents an efficient implementation of transformer architectures in Field-Programmable Gate Arrays(FPGAs) using hls4ml.

Calo-VQ: Vector-Quantized Two-Stage Generative Model in Calorimeter Simulation

no code implementations10 May 2024 Qibin Liu, Chase Shimmin, Xiulong Liu, Eli Shlizerman, Shu Li, Shih-Chieh Hsu

We introduce a novel machine learning method developed for the fast simulation of calorimeter detector response, adapting vector-quantized variational autoencoder (VQ-VAE).

FPGA Deployment of LFADS for Real-time Neuroscience Experiments

no code implementations2 Feb 2024 Xiaohan Liu, ChiJui Chen, YanLun Huang, LingChi Yang, Elham E Khoda, Yihui Chen, Scott Hauck, Shih-Chieh Hsu, Bo-Cheng Lai

Our implementation shows an inference latency of 41. 97 $\mu$s for processing the data in a single trial on a Xilinx U55C.

Ultra Fast Transformers on FPGAs for Particle Physics Experiments

no code implementations1 Feb 2024 Zhixing Jiang, Dennis Yin, Elham E Khoda, Vladimir Loncar, Ekaterina Govorkova, Eric Moreno, Philip Harris, Scott Hauck, Shih-Chieh Hsu

This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the \texttt{hls4ml} tool.

Reconstruction of Unstable Heavy Particles Using Deep Symmetry-Preserving Attention Networks

no code implementations5 Sep 2023 Michael James Fenton, Alexander Shmakov, Hideki Okawa, Yuji Li, Ko-Yang Hsiao, Shih-Chieh Hsu, Daniel Whiteson, Pierre Baldi

We explore the performance of the extended capability of SPA-NET in the context of semi-leptonic decays of top quark pairs as well as top quark pairs produced in association with a Higgs boson.

Single Particle Analysis

Low Latency Edge Classification GNN for Particle Trajectory Tracking on FPGAs

no code implementations20 Jun 2023 Shi-Yu Huang, Yun-Chen Yang, Yu-Ru Su, Bo-Cheng Lai, Javier Duarte, Scott Hauck, Shih-Chieh Hsu, Jin-Xuan Hu, Mark S. Neubauer

In-time particle trajectory reconstruction in the Large Hadron Collider is challenging due to the high collision rate and numerous particle hits.

Edge Classification Graph Neural Network

Data Science and Machine Learning in Education

no code implementations19 Jul 2022 Gabriele Benelli, Thomas Y. Chen, Javier Duarte, Matthew Feickert, Matthew Graham, Lindsey Gray, Dan Hackett, Phil Harris, Shih-Chieh Hsu, Gregor Kasieczka, Elham E. Khoda, Matthias Komm, Mia Liu, Mark S. Neubauer, Scarlet Norberg, Alexx Perloff, Marcel Rieger, Claire Savard, Kazuhiro Terao, Savannah Thais, Avik Roy, Jean-Roch Vlimant, Grigorios Chachamis

The growing role of data science (DS) and machine learning (ML) in high-energy physics (HEP) is well established and pertinent given the complex detectors, large data, sets and sophisticated analyses at the heart of HEP research.

BIG-bench Machine Learning

QONNX: Representing Arbitrary-Precision Quantized Neural Networks

1 code implementation15 Jun 2022 Alessandro Pappalardo, Yaman Umuroglu, Michaela Blott, Jovan Mitrevski, Ben Hawks, Nhan Tran, Vladimir Loncar, Sioni Summers, Hendrik Borras, Jules Muhizi, Matthew Trahms, Shih-Chieh Hsu, Scott Hauck, Javier Duarte

We present extensions to the Open Neural Network Exchange (ONNX) intermediate representation format to represent arbitrary-precision quantized neural networks.

Quantization

Graph Neural Networks for Charged Particle Tracking on FPGAs

no code implementations3 Dec 2021 Abdelrahman Elabd, Vesal Razavimaleki, Shi-Yu Huang, Javier Duarte, Markus Atkinson, Gage DeZoort, Peter Elmer, Scott Hauck, Jin-Xuan Hu, Shih-Chieh Hsu, Bo-Cheng Lai, Mark Neubauer, Isobel Ojalvo, Savannah Thais, Matthew Trahms

The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC).

Translation

Applications and Techniques for Fast Machine Learning in Science

no code implementations25 Oct 2021 Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, ASHISH SHARMA, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.

BIG-bench Machine Learning scientific discovery

SPANet: Generalized Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention

1 code implementation7 Jun 2021 Alexander Shmakov, Michael James Fenton, Ta-Wei Ho, Shih-Chieh Hsu, Daniel Whiteson, Pierre Baldi

The creation of unstable heavy particles at the Large Hadron Collider is the most direct way to address some of the deepest open questions in physics.

Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks

1 code implementation19 Oct 2020 Michael James Fenton, Alexander Shmakov, Ta-Wei Ho, Shih-Chieh Hsu, Daniel Whiteson, Pierre Baldi

Top quarks, produced in large numbers at the Large Hadron Collider, have a complex detector signature and require special reconstruction techniques.

Single Particle Analysis

FPGAs-as-a-Service Toolkit (FaaST)

2 code implementations16 Oct 2020 Dylan Sheldon Rankin, Jeffrey Krupa, Philip Harris, Maria Acosta Flechas, Burt Holzman, Thomas Klijnsma, Kevin Pedro, Nhan Tran, Scott Hauck, Shih-Chieh Hsu, Matthew Trahms, Kelvin Lin, Yu Lou, Ta-Wei Ho, Javier Duarte, Mia Liu

Computing needs for high energy physics are already intensive and are expected to increase drastically in the coming years.

Computational Physics Distributed, Parallel, and Cluster Computing High Energy Physics - Experiment Data Analysis, Statistics and Probability Instrumentation and Detectors

Parameter Estimation using Neural Networks in the Presence of Detector Effects

1 code implementation7 Oct 2020 Anders Andreassen, Shih-Chieh Hsu, Benjamin Nachman, Natchanon Suaysom, Adi Suresh

Histogram-based template fits are the main technique used for estimating parameters of high energy physics Monte Carlo generators.

FPGA-accelerated machine learning inference as a service for particle physics computing

1 code implementation18 Apr 2019 Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan, Benjamin Kreis, Brian Lee, Mia Liu, Vladimir Lončar, Jennifer Ngadiuba, Kevin Pedro, Brandon Perez, Maurizio Pierini, Dylan Rankin, Nhan Tran, Matthew Trahms, Aristeidis Tsaris, Colin Versteeg, Ted W. Way, Dustin Werran, Zhenbin Wu

New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains.

Data Analysis, Statistics and Probability High Energy Physics - Experiment Computational Physics Instrumentation and Detectors

Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

1 code implementation3 Jul 2015 Daniel Abercrombie, Nural Akchurin, Ece Akilli, Juan Alcaraz Maestre, Brandon Allen, Barbara Alvarez Gonzalez, Jeremy Andrea, Alexandre Arbey, Georges Azuelos, Patrizia Azzi, Mihailo Backović, Yang Bai, Swagato Banerjee, James Beacham, Alexander Belyaev, Antonio Boveia, Amelia Jean Brennan, Oliver Buchmueller, Matthew R. Buckley, Giorgio Busoni, Michael Buttignol, Giacomo Cacciapaglia, Regina Caputo, Linda Carpenter, Nuno Filipe Castro, Guillelmo Gomez Ceballos, Yangyang Cheng, John Paul Chou, Arely Cortes Gonzalez, Chris Cowden, Francesco D'Eramo, Annapaola De Cosa, Michele De Gruttola, Albert De Roeck, Andrea De Simone, Aldo Deandrea, Zeynep Demiragli, Anthony DiFranzo, Caterina Doglioni, Tristan du Pree, Robin Erbacher, Johannes Erdmann, Cora Fischer, Henning Flaecher, Patrick J. Fox, Benjamin Fuks, Marie-Helene Genest, Bhawna Gomber, Andreas Goudelis, Johanna Gramling, John Gunion, Kristian Hahn, Ulrich Haisch, Roni Harnik, Philip C. Harris, Kerstin Hoepfner, Siew Yan Hoh, Dylan George Hsu, Shih-Chieh Hsu, Yutaro Iiyama, Valerio Ippolito, Thomas Jacques, Xiangyang Ju, Felix Kahlhoefer, Alexis Kalogeropoulos, Laser Seymour Kaplan, Lashkar Kashif, Valentin V. Khoze, Raman Khurana, Khristian Kotov, Dmytro Kovalskyi, Suchita Kulkarni, Shuichi Kunori, Viktor Kutzner, Hyun Min Lee, Sung-Won Lee, Seng Pei Liew, Tongyan Lin, Steven Lowette, Romain Madar, Sarah Malik, Fabio Maltoni, Mario Martinez Perez, Olivier Mattelaer, Kentarou Mawatari, Christopher McCabe, Théo Megy, Enrico Morgante, Stephen Mrenna, Siddharth M. Narayanan, Andy Nelson, Sérgio F. Novaes, Klaas Ole Padeken, Priscilla Pani, Michele Papucci, Manfred Paulini, Christoph Paus, Jacopo Pazzini, Björn Penning, Michael E. Peskin, Deborah Pinna, Massimiliano Procura, Shamona F. Qazi, Davide Racco, Emanuele Re, Antonio Riotto, Thomas G. Rizzo, Rainer Roehrig, David Salek, Arturo Sanchez Pineda, Subir Sarkar, Alexander Schmidt, Steven Randolph Schramm, William Shepherd, Gurpreet Singh, Livia Soffi, Norraphat Srimanobhas, Kevin Sung, Tim M. P. Tait, Timothee Theveneaux-Pelzer, Marc Thomas, Mia Tosi, Daniele Trocino, Sonaina Undleeb, Alessandro Vichi, Fuquan Wang, Lian-Tao Wang, Ren-Jie Wang, Nikola Whallon, Steven Worm, Mengqing Wu, Sau Lan Wu, Hongtao Yang, Yong Yang, Shin-Shan Yu, Bryan Zaldivar, Marco Zanetti, Zhiqing Zhang, Alberto Zucchetta

This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches.

High Energy Physics - Experiment High Energy Physics - Phenomenology

Cannot find the paper you are looking for? You can Submit a new open access paper.