no code implementations • Findings (ACL) 2022 • Yuxia Wang, Minghan Wang, Yimeng Chen, Shimin Tao, Jiaxin Guo, Chang Su, Min Zhang, Hao Yang
Natural Language Inference (NLI) datasets contain examples with highly ambiguous labels due to its subjectivity.
no code implementations • MTSummit 2021 • Minghan Wang, Jiaxin Guo, Yimeng Chen, Chang Su, Min Zhang, Shimin Tao, Hao Yang
Based on large-scale pretrained networks and the liability to be easily overfitting with limited labelled training data of multimodal translation (MMT) is a critical issue in MMT.
no code implementations • WMT (EMNLP) 2020 • Hao Yang, Minghan Wang, Daimeng Wei, Hengchao Shang, Jiaxin Guo, Zongyao Li, Lizhi Lei, Ying Qin, Shimin Tao, Shiliang Sun, Yimeng Chen
The paper presents the submission by HW-TSC in the WMT 2020 Automatic Post Editing Shared Task.
no code implementations • INLG (ACL) 2021 • Minghan Wang, Guo Jiaxin, Yuxia Wang, Yimeng Chen, Su Chang, Daimeng Wei, Min Zhang, Shimin Tao, Hao Yang
Mask-predict CMLM (Ghazvininejad et al., 2019) has achieved stunning performance among non-autoregressive NMT models, but we find that the mechanism of predicting all of the target words only depending on the hidden state of [MASK] is not effective and efficient in initial iterations of refinement, resulting in ungrammatical repetitions and slow convergence.
no code implementations • WMT (EMNLP) 2020 • Minghan Wang, Hao Yang, Hengchao Shang, Daimeng Wei, Jiaxin Guo, Lizhi Lei, Ying Qin, Shimin Tao, Shiliang Sun, Yimeng Chen, Liangyou Li
This paper presents our work in the WMT 2020 Word and Sentence-Level Post-Editing Quality Estimation (QE) Shared Task.
no code implementations • EMNLP (BlackboxNLP) 2021 • Minghan Wang, Guo Jiaxin, Yuxia Wang, Yimeng Chen, Su Chang, Hengchao Shang, Min Zhang, Shimin Tao, Hao Yang
Length prediction is a special task in a series of NAT models where target length has to be determined before generation.
no code implementations • WMT (EMNLP) 2021 • Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao Li, Jianfei Feng, Zhengzhe Yu, Jiaxin Guo, Shaojun Li, Lizhi Lei, Shimin Tao, Hao Yang, Jun Yao, Ying Qin
This paper presents the submission of Huawei Translation Services Center (HW-TSC) to WMT 2021 Efficiency Shared Task.
no code implementations • WMT (EMNLP) 2021 • Yimeng Chen, Chang Su, Yingtao Zhang, Yuxia Wang, Xiang Geng, Hao Yang, Shimin Tao, Guo Jiaxin, Wang Minghan, Min Zhang, Yujia Liu, ShuJian Huang
This paper presents our work in WMT 2021 Quality Estimation (QE) Shared Task.
no code implementations • IWSLT (ACL) 2022 • Minghan Wang, Jiaxin Guo, Xiaosong Qiao, Yuxia Wang, Daimeng Wei, Chang Su, Yimeng Chen, Min Zhang, Shimin Tao, Hao Yang, Ying Qin
For machine translation part, we pretrained three translation models on WMT21 dataset and fine-tuned them on in-domain corpora.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +4
no code implementations • IWSLT (ACL) 2022 • Minghan Wang, Jiaxin Guo, Yinglu Li, Xiaosong Qiao, Yuxia Wang, Zongyao Li, Chang Su, Yimeng Chen, Min Zhang, Shimin Tao, Hao Yang, Ying Qin
The cascade system is composed of a chunking-based streaming ASR model and the SimulMT model used in the T2T track.
no code implementations • IWSLT (ACL) 2022 • Jiaxin Guo, Yinglu Li, Minghan Wang, Xiaosong Qiao, Yuxia Wang, Hengchao Shang, Chang Su, Yimeng Chen, Min Zhang, Shimin Tao, Hao Yang, Ying Qin
The paper presents the HW-TSC’s pipeline and results of Offline Speech to Speech Translation for IWSLT 2022.
no code implementations • SemEval (NAACL) 2022 • Xiaosong Qiao, Yinglu Li, Min Zhang, Minghan Wang, Hao Yang, Shimin Tao, Qin Ying
This paper describes the system for the identifying Plausible Clarifications of Implicit and Underspecified Phrases.
no code implementations • WAT 2022 • Yilun Liu, Zhen Zhang, Shimin Tao, Junhui Li, Hao Yang
In this paper we describe our submission to the shared tasks of the 9th Workshop on Asian Translation (WAT 2022) on NICT–SAP under the team name ”HwTscSU”.
no code implementations • 24 Dec 2024 • Jiaxin Guo, Daimeng Wei, Yuanchang Luo, Shimin Tao, Hengchao Shang, Zongyao Li, Shaojun Li, Jinlong Yang, Zhanglin Wu, Zhiqiang Rao, Hao Yang
Given a unique input $X$, we submit $n$ variations of prompts with $X$ to LLMs in batch mode to decode and derive probability distributions.
no code implementations • 2 Dec 2024 • Yuhe Ji, Yilun Liu, Feiyu Yao, Minggui He, Shimin Tao, Xiaofeng Zhao, Su Chang, Xinhua Yang, Weibin Meng, Yuming Xie, Boxing Chen, Hao Yang
The increasing complexity of computer systems necessitates innovative approaches to fault and error management, going beyond traditional manual log analysis.
1 code implementation • 12 Oct 2024 • Yilun Liu, Yuhe Ji, Shimin Tao, Minggui He, Weibin Meng, Shenglin Zhang, Yongqian Sun, Yuming Xie, Boxing Chen, Hao Yang
Automatic log analysis is essential for the efficient Operation and Maintenance (O&M) of software systems, providing critical insights into system behaviors.
1 code implementation • 23 Aug 2024 • Yilun Liu, Minggui He, Feiyu Yao, Yuhe Ji, Shimin Tao, Jingzhou Du, Duan Li, Jian Gao, Li Zhang, Hao Yang, Boxing Chen, Osamu Yoshie
To achieve this, we mined 15 essential dimensions for high-quality prompts from advanced users and curated a multi-turn dataset.
1 code implementation • 2 Jul 2024 • Tianyu Cui, Shiyu Ma, Ziang Chen, Tong Xiao, Shimin Tao, Yilun Liu, Shenglin Zhang, Duoming Lin, Changchang Liu, Yuzhe Cai, Weibin Meng, Yongqian Sun, Dan Pei
These findings provide insights into the strengths and weaknesses of LLMs in multilingual environments and the effectiveness of different prompt strategies.
no code implementations • 21 Mar 2024 • Haofei Zhao, Yilun Liu, Shimin Tao, Weibin Meng, Yimeng Chen, Xiang Geng, Chang Su, Min Zhang, Hao Yang
Machine Translation Quality Estimation (MTQE) is the task of estimating the quality of machine-translated text in real time without the need for reference translations, which is of great importance for the development of MT.
1 code implementation • 28 Feb 2024 • Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang, Boxing Chen, Hao Yang, Bei Li, Tong Xiao, Jingbo Zhu
Given the significant resource allocation required for training and evaluating models, it is advantageous to have an efficient method for selecting high-quality IT data.
1 code implementation • 23 Feb 2024 • Xinglin Lyu, Junhui Li, Yanqing Zhao, Daimeng Wei, Shimin Tao, Hao Yang, Min Zhang
In this paper, we propose an alternative adaptation approach, named Decoding-enhanced Multi-phase Prompt Tuning (DeMPT), to make LLMs discriminately model and utilize the inter- and intra-sentence context and more effectively adapt LLMs to context-aware NMT.
no code implementations • 21 Jan 2024 • Yuang Li, Jiawei Yu, Min Zhang, Mengxin Ren, Yanqing Zhao, Xiaofeng Zhao, Shimin Tao, Jinsong Su, Hao Yang
In this work, we connect the Whisper encoder with ChatGLM3 and provide in-depth comparisons of these two approaches using Chinese automatic speech recognition (ASR) and name entity recognition (NER) tasks.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +6
no code implementations • 11 Jan 2024 • Jiaxin Guo, Minghan Wang, Xiaosong Qiao, Daimeng Wei, Hengchao Shang, Zongyao Li, Zhengzhe Yu, Yinglu Li, Chang Su, Min Zhang, Shimin Tao, Hao Yang
Previous works usually adopt end-to-end models and has strong dependency on Pseudo Paired Data and Original Paired Data.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
2 code implementations • 22 Nov 2023 • Yilun Liu, Shimin Tao, Xiaofeng Zhao, Ming Zhu, Wenbing Ma, Junhao Zhu, Chang Su, Yutai Hou, Miao Zhang, Min Zhang, Hongxia Ma, Li Zhang, Hao Yang, Yanfei Jiang
Instruction tuning is crucial for enabling Language Learning Models (LLMs) in responding to human instructions.
1 code implementation • 23 Sep 2023 • Xiang Geng, Zhejian Lai, Yu Zhang, Shimin Tao, Hao Yang, Jiajun Chen, ShuJian Huang
We generate pseudo MQM data using parallel data from the WMT translation task.
no code implementations • 18 Sep 2023 • Yuang Li, Min Zhang, Chang Su, Yinglu Li, Xiaosong Qiao, Mengxin Ren, Miaomiao Ma, Daimeng Wei, Shimin Tao, Hao Yang
The recognition of rare named entities, such as personal names and terminologies, is challenging for automatic speech recognition (ASR) systems, especially when they are not frequently observed in the training data.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +4
1 code implementation • 26 Aug 2023 • Shuang Li, Jiangjie Chen, Siyu Yuan, Xinyi Wu, Hao Yang, Shimin Tao, Yanghua Xiao
To translate well, machine translation (MT) systems and general-purposed language models (LMs) need a deep understanding of both source and target languages and cultures.
1 code implementation • 15 Aug 2023 • Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yanqing Zhao, Yuhang Chen, Hao Yang, Yanfei Jiang, Xun Chen
LogPrompt employs large language models (LLMs) to perform online log analysis tasks via a suite of advanced prompt strategies tailored for log tasks, which enhances LLMs' performance by up to 380. 7% compared with simple prompts.
1 code implementation • 8 Aug 2023 • Yuxia Wang, Shimin Tao, Ning Xie, Hao Yang, Timothy Baldwin, Karin Verspoor
Despite the subjective nature of semantic textual similarity (STS) and pervasive disagreements in STS annotation, existing benchmarks have used averaged human ratings as the gold standard.
no code implementations • 13 Jun 2023 • Hao Yang, Min Zhang, Shimin Tao, Minghan Wang, Daimeng Wei, Yanfei Jiang
Cross-lingual Machine Translation (MT) quality estimation plays a crucial role in evaluating translation performance.
1 code implementation • 12 Dec 2022 • Yachao Li, Junhui Li, Jing Jiang, Shimin Tao, Hao Yang, Min Zhang
To alleviate this problem, we propose a position-aware Transformer (P-Transformer) to enhance both the absolute and relative position information in both self-attention and cross-attention.
1 code implementation • NAACL 2022 • Chun Zeng, Jiangjie Chen, Tianyi Zhuang, Rui Xu, Hao Yang, Ying Qin, Shimin Tao, Yanghua Xiao
To this end, we propose a plug-in algorithm for this line of work, i. e., Aligned Constrained Training (ACT), which alleviates this problem by familiarizing the model with the source-side context of the constraints.
no code implementations • EAMT 2022 • Minghan Wang, Jiaxin Guo, Yuxia Wang, Daimeng Wei, Hengchao Shang, Chang Su, Yimeng Chen, Yinglu Li, Min Zhang, Shimin Tao, Hao Yang
In this paper, we aim to close the gap by preserving the original objective of AR and NAR under a unified framework.
no code implementations • 22 Dec 2021 • Jiaxin Guo, Minghan Wang, Daimeng Wei, Hengchao Shang, Yuxia Wang, Zongyao Li, Zhengzhe Yu, Zhanglin Wu, Yimeng Chen, Chang Su, Min Zhang, Lizhi Lei, Shimin Tao, Hao Yang
An effective training strategy to improve the performance of AT models is Self-Distillation Mixup (SDM) Training, which pre-trains a model on raw data, generates distilled data by the pre-trained model itself and finally re-trains a model on the combination of raw data and distilled data.
no code implementations • 22 Dec 2021 • Zhengzhe Yu, Jiaxin Guo, Minghan Wang, Daimeng Wei, Hengchao Shang, Zongyao Li, Zhanglin Wu, Yuxia Wang, Yimeng Chen, Chang Su, Min Zhang, Lizhi Lei, Shimin Tao, Hao Yang
Deep encoders have been proven to be effective in improving neural machine translation (NMT) systems, but it reaches the upper bound of translation quality when the number of encoder layers exceeds 18.
no code implementations • 6 Dec 2021 • Yichen Zhu, Weibin Meng, Ying Liu, Shenglin Zhang, Tao Han, Shimin Tao, Dan Pei
UniLog: Deploy One Model and Specialize it for All Log Analysis Tasks
no code implementations • 9 Aug 2021 • Minghan Wang, Yuxia Wang, Chang Su, Jiaxin Guo, Yingtao Zhang, Yujia Liu, Min Zhang, Shimin Tao, Xingshan Zeng, Liangyou Li, Hao Yang, Ying Qin
This paper describes our work in participation of the IWSLT-2021 offline speech translation task.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +5