Search Results for author: Shimin Tao

Found 17 papers, 1 papers with code

Make the Blind Translator See The World: A Novel Transfer Learning Solution for Multimodal Machine Translation

no code implementations MTSummit 2021 Minghan Wang, Jiaxin Guo, Yimeng Chen, Chang Su, Min Zhang, Shimin Tao, Hao Yang

Based on large-scale pretrained networks and the liability to be easily overfitting with limited labelled training data of multimodal translation (MMT) is a critical issue in MMT.

Multimodal Machine Translation Transfer Learning +1

HI-CMLM: Improve CMLM with Hybrid Decoder Input

no code implementations INLG (ACL) 2021 Minghan Wang, Guo Jiaxin, Yuxia Wang, Yimeng Chen, Su Chang, Daimeng Wei, Min Zhang, Shimin Tao, Hao Yang

Mask-predict CMLM (Ghazvininejad et al., 2019) has achieved stunning performance among non-autoregressive NMT models, but we find that the mechanism of predicting all of the target words only depending on the hidden state of [MASK] is not effective and efficient in initial iterations of refinement, resulting in ungrammatical repetitions and slow convergence.

Translation

Neighbors Are Not Strangers: Improving Non-Autoregressive Translation under Low-Frequency Lexical Constraints

1 code implementation28 Apr 2022 Chun Zeng, Jiangjie Chen, Tianyi Zhuang, Rui Xu, Hao Yang, Ying Qin, Shimin Tao, Yanghua Xiao

To this end, we propose a plug-in algorithm for this line of work, i. e., Aligned Constrained Training (ACT), which alleviates this problem by familiarizing the model with the source-side context of the constraints.

Translation

Self-Distillation Mixup Training for Non-autoregressive Neural Machine Translation

no code implementations22 Dec 2021 Jiaxin Guo, Minghan Wang, Daimeng Wei, Hengchao Shang, Yuxia Wang, Zongyao Li, Zhengzhe Yu, Zhanglin Wu, Yimeng Chen, Chang Su, Min Zhang, Lizhi Lei, Shimin Tao, Hao Yang

An effective training strategy to improve the performance of AT models is Self-Distillation Mixup (SDM) Training, which pre-trains a model on raw data, generates distilled data by the pre-trained model itself and finally re-trains a model on the combination of raw data and distilled data.

Knowledge Distillation Machine Translation +1

Joint-training on Symbiosis Networks for Deep Nueral Machine Translation models

no code implementations22 Dec 2021 Zhengzhe Yu, Jiaxin Guo, Minghan Wang, Daimeng Wei, Hengchao Shang, Zongyao Li, Zhanglin Wu, Yuxia Wang, Yimeng Chen, Chang Su, Min Zhang, Lizhi Lei, Shimin Tao, Hao Yang

Deep encoders have been proven to be effective in improving neural machine translation (NMT) systems, but it reaches the upper bound of translation quality when the number of encoder layers exceeds 18.

Machine Translation Translation

Cannot find the paper you are looking for? You can Submit a new open access paper.