Search Results for author: Shiori Sagawa

Found 11 papers, 7 papers with code

Overparameterization hurts worst-group accuracy with spurious correlations

no code implementations ICML 2020 Shiori Sagawa, aditi raghunathan, Pang Wei Koh, Percy Liang

Increasing model capacity well beyond the point of zero training error has been observed to improve average test accuracy.

Extending the WILDS Benchmark for Unsupervised Adaptation

no code implementations ICLR 2022 Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Etienne David, Ian Stavness, Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey Levine, Chelsea Finn, Percy Liang

Unlabeled data can be a powerful point of leverage for mitigating these distribution shifts, as it is frequently much more available than labeled data and can often be obtained from distributions beyond the source distribution as well.

On the Opportunities and Risks of Foundation Models

no code implementations16 Aug 2021 Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Kohd, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, aditi raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang

AI is undergoing a paradigm shift with the rise of models (e. g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks.

Transfer Learning

Just Train Twice: Improving Group Robustness without Training Group Information

1 code implementation19 Jul 2021 Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, aditi raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, Chelsea Finn

Standard training via empirical risk minimization (ERM) can produce models that achieve high accuracy on average but low accuracy on certain groups, especially in the presence of spurious correlations between the input and label.

Image Classification

Selective Classification Can Magnify Disparities Across Groups

1 code implementation ICLR 2021 Erik Jones, Shiori Sagawa, Pang Wei Koh, Ananya Kumar, Percy Liang

In this paper, we find that while selective classification can improve average accuracies, it can simultaneously magnify existing accuracy disparities between various groups within a population, especially in the presence of spurious correlations.

Classification General Classification

An Investigation of Why Overparameterization Exacerbates Spurious Correlations

2 code implementations9 May 2020 Shiori Sagawa, aditi raghunathan, Pang Wei Koh, Percy Liang

We study why overparameterization -- increasing model size well beyond the point of zero training error -- can hurt test error on minority groups despite improving average test error when there are spurious correlations in the data.

Multi-Resolution Weak Supervision for Sequential Data

no code implementations NeurIPS 2019 Frederic Sala, Paroma Varma, Jason Fries, Daniel Y. Fu, Shiori Sagawa, Saelig Khattar, Ashwini Ramamoorthy, Ke Xiao, Kayvon Fatahalian, James Priest, Christopher Ré

Multi-resolution sources exacerbate this challenge due to complex correlations and sample complexity that scales in the length of the sequence.

Distributionally Robust Language Modeling

1 code implementation IJCNLP 2019 Yonatan Oren, Shiori Sagawa, Tatsunori B. Hashimoto, Percy Liang

Language models are generally trained on data spanning a wide range of topics (e. g., news, reviews, fiction), but they might be applied to an a priori unknown target distribution (e. g., restaurant reviews).

Language Modelling

Cannot find the paper you are looking for? You can Submit a new open access paper.