Search Results for author: Shiyue Zhang

Found 28 papers, 19 papers with code

CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models

1 code implementation21 Jul 2024 Zheng Chong, Xiao Dong, Haoxiang Li, Shiyue Zhang, Wenqing Zhang, Xujie Zhang, Hanqing Zhao, Xiaodan Liang

Virtual try-on methods based on diffusion models achieve realistic try-on effects but often replicate the backbone network as a ReferenceNet or use additional image encoders to process condition inputs, leading to high training and inference costs.

Fashion Synthesis Image Generation +1

Kernel Semi-Implicit Variational Inference

2 code implementations29 May 2024 Ziheng Cheng, Longlin Yu, Tianyu Xie, Shiyue Zhang, Cheng Zhang

This way, the upper-level objective becomes the kernel Stein discrepancy (KSD), which is readily computable for stochastic gradient descent due to the hierarchical structure of semi-implicit variational distributions.

Bayesian Inference Variational Inference

Reflected Flow Matching

1 code implementation26 May 2024 Tianyu Xie, Yu Zhu, Longlin Yu, Tong Yang, Ziheng Cheng, Shiyue Zhang, Xiangyu Zhang, Cheng Zhang

We propose reflected flow matching (RFM) to train the velocity model in reflected CNFs by matching the conditional velocity fields in a simulation-free manner, similar to the vanilla FM.

DiffCloth: Diffusion Based Garment Synthesis and Manipulation via Structural Cross-modal Semantic Alignment

no code implementations ICCV 2023 Xujie Zhang, BinBin Yang, Michael C. Kampffmeyer, Wenqing Zhang, Shiyue Zhang, Guansong Lu, Liang Lin, Hang Xu, Xiaodan Liang

Cross-modal garment synthesis and manipulation will significantly benefit the way fashion designers generate garments and modify their designs via flexible linguistic interfaces. Current approaches follow the general text-to-image paradigm and mine cross-modal relations via simple cross-attention modules, neglecting the structural correspondence between visual and textual representations in the fashion design domain.

Attribute Constituency Parsing +2

MixCE: Training Autoregressive Language Models by Mixing Forward and Reverse Cross-Entropies

1 code implementation26 May 2023 Shiyue Zhang, Shijie Wu, Ozan Irsoy, Steven Lu, Mohit Bansal, Mark Dredze, David Rosenberg

Autoregressive language models are trained by minimizing the cross-entropy of the model distribution Q relative to the data distribution P -- that is, minimizing the forward cross-entropy, which is equivalent to maximum likelihood estimation (MLE).

HistAlign: Improving Context Dependency in Language Generation by Aligning with History

1 code implementation8 May 2023 David Wan, Shiyue Zhang, Mohit Bansal

Cache-LMs, which augment LMs with a memory of recent history, can increase context dependency and have shown remarkable performance in diverse language generation tasks.

Abstractive Text Summarization Text Generation

Evaluating the Factual Consistency of Large Language Models Through News Summarization

1 code implementation15 Nov 2022 Derek Tam, Anisha Mascarenhas, Shiyue Zhang, Sarah Kwan, Mohit Bansal, Colin Raffel

To generate summaries that are factually inconsistent, we generate summaries from a suite of summarization models that we have manually annotated as factually inconsistent.

News Summarization

Summarization Programs: Interpretable Abstractive Summarization with Neural Modular Trees

1 code implementation21 Sep 2022 Swarnadeep Saha, Shiyue Zhang, Peter Hase, Mohit Bansal

We demonstrate that SP-Search effectively represents the generative process behind human summaries using modules that are typically faithful to their intended behavior.

Abstractive Text Summarization Sentence +1

Extractive is not Faithful: An Investigation of Broad Unfaithfulness Problems in Extractive Summarization

1 code implementation8 Sep 2022 Shiyue Zhang, David Wan, Mohit Bansal

Though extractive summarization is less prone to the common unfaithfulness issues of abstractive summaries, does that mean extractive is equal to faithful?

Abstractive Text Summarization Extractive Summarization

SETSum: Summarization and Visualization of Student Evaluations of Teaching

1 code implementation NAACL (ACL) 2022 Yinuo Hu, Shiyue Zhang, Viji Sathy, A. T. Panter, Mohit Bansal

Ten university professors from diverse departments serve as evaluators of the system and all agree that SETSum helps them interpret SET results more efficiently; and 6 out of 10 instructors prefer our system over the standard static PDF report (while the remaining 4 would like to have both).

Aspect Extraction Sentiment Analysis

Masked Part-Of-Speech Model: Does Modeling Long Context Help Unsupervised POS-tagging?

1 code implementation NAACL 2022 Xiang Zhou, Shiyue Zhang, Mohit Bansal

MPoSM can model arbitrary tag dependency and perform POS induction through the objective of masked POS reconstruction.

POS POS Tagging +1

How can NLP Help Revitalize Endangered Languages? A Case Study and Roadmap for the Cherokee Language

1 code implementation ACL 2022 Shiyue Zhang, Ben Frey, Mohit Bansal

We hope that our work serves not only to inform the NLP community about Cherokee, but also to provide inspiration for future work on endangered languages in general.

Finding a Balanced Degree of Automation for Summary Evaluation

1 code implementation EMNLP 2021 Shiyue Zhang, Mohit Bansal

In this work, we propose flexible semiautomatic to automatic summary evaluation metrics, following the Pyramid human evaluation method.

Natural Language Inference Semantic Role Labeling

Continuous Language Generative Flow

1 code implementation ACL 2021 Zineng Tang, Shiyue Zhang, Hyounghun Kim, Mohit Bansal

Recent years have witnessed various types of generative models for natural language generation (NLG), especially RNNs or transformer based sequence-to-sequence models, as well as variational autoencoder (VAE) and generative adversarial network (GAN) based models.

Data Augmentation Density Estimation +9

EmailSum: Abstractive Email Thread Summarization

1 code implementation ACL 2021 Shiyue Zhang, Asli Celikyilmaz, Jianfeng Gao, Mohit Bansal

Furthermore, we find that widely used automatic evaluation metrics (ROUGE, BERTScore) are weakly correlated with human judgments on this email thread summarization task.

Abstractive Text Summarization Email Thread Summarization

ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality Estimation and Corrective Feedback

2 code implementations ACL 2021 Shiyue Zhang, Benjamin Frey, Mohit Bansal

The quantitative evaluation demonstrates that our backbone translation models achieve state-of-the-art translation performance and our quality estimation well correlates with both BLEU and human judgment.

Machine Translation NMT +3

ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization

1 code implementation EMNLP 2020 Shiyue Zhang, Benjamin Frey, Mohit Bansal

To help save this endangered language, we introduce ChrEn, a Cherokee-English parallel dataset, to facilitate machine translation research between Cherokee and English.

Cultural Vocal Bursts Intensity Prediction Language Modelling +5

Addressing Semantic Drift in Question Generation for Semi-Supervised Question Answering

2 code implementations IJCNLP 2019 Shiyue Zhang, Mohit Bansal

Second, since the traditional evaluation metrics (e. g., BLEU) often fall short in evaluating the quality of generated questions, we propose a QA-based evaluation method which measures the QG model's ability to mimic human annotators in generating QA training data.

Question Answering Question Generation +2

Medical Diagnosis From Laboratory Tests by Combining Generative and Discriminative Learning

no code implementations12 Nov 2017 Shiyue Zhang, Pengtao Xie, Dong Wang, Eric P. Xing

In hospital, physicians rely on massive clinical data to make diagnosis decisions, among which laboratory tests are one of the most important resources.

Decision Making Imputation +2

Memory-augmented Neural Machine Translation

no code implementations EMNLP 2017 Yang Feng, Shiyue Zhang, Andi Zhang, Dong Wang, Andrew Abel

Neural machine translation (NMT) has achieved notable success in recent times, however it is also widely recognized that this approach has limitations with handling infrequent words and word pairs.

Machine Translation NMT +1

Flexible and Creative Chinese Poetry Generation Using Neural Memory

no code implementations ACL 2017 Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang, Andrew Abel, Shiyue Zhang, Andi Zhang

It has been shown that Chinese poems can be successfully generated by sequence-to-sequence neural models, particularly with the attention mechanism.

Memory Visualization for Gated Recurrent Neural Networks in Speech Recognition

no code implementations28 Sep 2016 Zhiyuan Tang, Ying Shi, Dong Wang, Yang Feng, Shiyue Zhang

Recurrent neural networks (RNNs) have shown clear superiority in sequence modeling, particularly the ones with gated units, such as long short-term memory (LSTM) and gated recurrent unit (GRU).

Automatic Speech Recognition Automatic Speech Recognition (ASR) +1

Collaborative Learning for Language and Speaker Recognition

no code implementations27 Sep 2016 Lantian Li, Zhiyuan Tang, Dong Wang, Andrew Abel, Yang Feng, Shiyue Zhang

This paper presents a unified model to perform language and speaker recognition simultaneously and altogether.

Speaker Recognition

Cannot find the paper you are looking for? You can Submit a new open access paper.