no code implementations • 9 Apr 2025 • Snigdha Sen, Lorna Smith, Lucy Caselton, Joey Clemente, Maxine Tran, Shonit Punwani, David Atkinson, Richard L Hesketh, Eleftheria Panagiotaki
This work aims to characterise renal tumour microstructure using diffusion MRI (dMRI); via the Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumours (VERDICT)-MRI framework with self-supervised learning.
1 code implementation • 5 Feb 2025 • Wen Yan, Qianye Yang, Shiqi Huang, Yipei Wang, Shonit Punwani, Mark Emberton, Vasilis Stavrinides, Yipeng Hu, Dean Barratt
Spatial correspondence can be represented by pairs of segmented regions, such that the image registration networks aim to segment corresponding regions rather than predicting displacement fields or transformation parameters.
1 code implementation • 11 Nov 2024 • Weixi Yi, Yipei Wang, Natasha Thorley, Alexander Ng, Shonit Punwani, Veeru Kasivisvanathan, Dean C. Barratt, Shaheer Ullah Saeed, Yipeng Hu
Current imaging-based prostate cancer diagnosis requires both MR T2-weighted (T2w) and diffusion-weighted imaging (DWI) sequences, with additional sequences for potentially greater accuracy improvement.
no code implementations • 30 Oct 2024 • Xiangcen Wu, Yipei Wang, Qianye Yang, Natasha Thorley, Shonit Punwani, Veeru Kasivisvanathan, Ester Bonmati, Yipeng Hu
Based on the presented experiments from two clinical data sets, consisting of histopathology-labelled MR images from more than 800 and 500 patients in the respective UCLA and UCL PROMIS studies, we show that the proposed strategy can improve the diagnostic accuracy, by augmenting the radiologist reading of the MR imaging.
1 code implementation • 8 Jul 2024 • Yinsong Xu, Yipei Wang, Ziyi Shen, Iani J. M. B. Gayo, Natasha Thorley, Shonit Punwani, Aidong Men, Dean Barratt, Qingchao Chen, Yipeng Hu
The Gleason groups serve as the primary histological grading system for prostate cancer, providing crucial insights into the cancer's potential for growth and metastasis.
1 code implementation • 12 Sep 2023 • Snigdha Sen, Saurabh Singh, Hayley Pye, Caroline M. Moore, Hayley Whitaker, Shonit Punwani, David Atkinson, Eleftheria Panagiotaki, Paddy J. Slator
Results: In simulations, ssVERDICT outperforms the baseline methods (NLLS and supervised DL) in estimating all the parameters from the VERDICT prostate model in terms of Pearson's correlation coefficient, bias, and MSE.
no code implementations • 17 Jul 2023 • Wen Yan, Bernard Chiu, Ziyi Shen, Qianye Yang, Tom Syer, Zhe Min, Shonit Punwani, Mark Emberton, David Atkinson, Dean C. Barratt, Yipeng Hu
One of the distinct characteristics in radiologists' reading of multiparametric prostate MR scans, using reporting systems such as PI-RADS v2. 1, is to score individual types of MR modalities, T2-weighted, diffusion-weighted, and dynamic contrast-enhanced, and then combine these image-modality-specific scores using standardised decision rules to predict the likelihood of clinically significant cancer.
no code implementations • 3 Mar 2023 • Shaheer U. Saeed, Tom Syer, Wen Yan, Qianye Yang, Mark Emberton, Shonit Punwani, Matthew J. Clarkson, Dean C. Barratt, Yipeng Hu
For the first time, we evaluate the realism of the generated pathology by blind expert identification of the presence of suspected lesions, where we find that the clinician performs similarly for both real and synthesised images, with a 2. 9 percentage point difference in lesion identification accuracy between real and synthesised images, demonstrating the potentials in radiological training purposes.
1 code implementation • 26 Jul 2022 • Qianye Yang, David Atkinson, Yunguan Fu, Tom Syer, Wen Yan, Shonit Punwani, Matthew J. Clarkson, Dean C. Barratt, Tom Vercauteren, Yipeng Hu
In this work, we consider the task of pairwise cross-modality image registration, which may benefit from exploiting additional images available only at training time from an additional modality that is different to those being registered.
no code implementations • 30 Mar 2022 • Wen Yan, Qianye Yang, Tom Syer, Zhe Min, Shonit Punwani, Mark Emberton, Dean C. Barratt, Bernard Chiu, Yipeng Hu
However, the differences in false-positives and false-negatives, between the actual errors and the perceived counterparts if DSC is used, can be as high as 152 and 154, respectively, out of the 357 test set lesions.
no code implementations • 19 Sep 2021 • Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos, Eleftheria Panagiotaki
Firstly, we introduce a semantic cycle-consistency loss in the source domain to ensure that the translation preserves the semantics.
2 code implementations • 14 Oct 2020 • Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos, Eleftheria Panagiotaki
Domain adaptation methods partially mitigate this problem by translating training data from a related source domain to a novel target domain, but typically assume that a one-to-one translation is possible.