no code implementations • 9 Sep 2021 • Marco Pistoia, Syed Farhan Ahmad, Akshay Ajagekar, Alexander Buts, Shouvanik Chakrabarti, Dylan Herman, Shaohan Hu, Andrew Jena, Pierre Minssen, Pradeep Niroula, Arthur Rattew, Yue Sun, Romina Yalovetzky
In fact, finance is estimated to be the first industry sector to benefit from Quantum Computing not only in the medium and long terms, but even in the short term.
no code implementations • 11 Dec 2020 • Tongyang Li, Chunhao Wang, Shouvanik Chakrabarti, Xiaodi Wu
We give a sublinear classical algorithm that can interpolate smoothly between these two cases: for any fixed $q\in (1, 2]$, we solve the matrix game where $\mathcal{X}$ is a $\ell_{q}$-norm unit ball within additive error $\epsilon$ in time $\tilde{O}((n+d)/{\epsilon^{2}})$.
1 code implementation • 2 Apr 2020 • Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, Xiaodi Wu
We also conduct a case study of training a VQC instance with controls, which shows the advantage of our scheme over existing auto-differentiation for quantum circuits without controls.
1 code implementation • NeurIPS 2019 • Shouvanik Chakrabarti, Yiming Huang, Tongyang Li, Soheil Feizi, Xiaodi Wu
The study of quantum generative models is well-motivated, not only because of its importance in quantum machine learning and quantum chemistry but also because of the perspective of its implementation on near-term quantum machines.
no code implementations • 4 Apr 2019 • Tongyang Li, Shouvanik Chakrabarti, Xiaodi Wu
We design sublinear quantum algorithms for the same task running in $\tilde{O}(\sqrt{n} +\sqrt{d})$ time, a quadratic improvement in both $n$ and $d$.