Search Results for author: Shuai Lin

Found 5 papers, 4 papers with code

Prototypical Graph Contrastive Learning

1 code implementation17 Jun 2021 Shuai Lin, Pan Zhou, Zi-Yuan Hu, Shuojia Wang, Ruihui Zhao, Yefeng Zheng, Liang Lin, Eric Xing, Xiaodan Liang

However, since for a query, its negatives are uniformly sampled from all graphs, existing methods suffer from the critical sampling bias issue, i. e., the negatives likely having the same semantic structure with the query, leading to performance degradation.

Contrastive Learning Representation Learning

Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation

1 code implementation22 Dec 2020 Shuai Lin, Pan Zhou, Xiaodan Liang, Jianheng Tang, Ruihui Zhao, Ziliang Chen, Liang Lin

Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues.

Dialogue Generation Meta-Learning

Iterative Graph Self-Distillation

no code implementations23 Oct 2020 HANLIN ZHANG, Shuai Lin, Weiyang Liu, Pan Zhou, Jian Tang, Xiaodan Liang, Eric P. Xing

How to discriminatively vectorize graphs is a fundamental challenge that attracts increasing attentions in recent years.

Contrastive Learning Graph Learning +1

Walking with Perception: Efficient Random Walk Sampling via Common Neighbor Awareness

1 code implementation ‏‏‎ ‎ 2020 Yongkun Li, Zhiyong Wu, Shuai Lin, Hong Xie, Min Lv, Yinlong Xu, John C. S. Lui

Random walk is widely applied to sample large-scale graphs due to its simplicity of implementation and solid theoretical foundations of bias analysis.

Data-to-Text Generation with Style Imitation

1 code implementation Findings of the Association for Computational Linguistics 2020 Shuai Lin, Wentao Wang, Zichao Yang, Xiaodan Liang, Frank F. Xu, Eric Xing, Zhiting Hu

That is, the model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the content record.

Data-to-Text Generation Style Transfer

Cannot find the paper you are looking for? You can Submit a new open access paper.