no code implementations • 21 May 2025 • Ao Liu, Botong Zhou, Can Xu, Chayse Zhou, Chenchen Zhang, Chengcheng Xu, Chenhao Wang, Decheng Wu, Dengpeng Wu, Dian Jiao, Dong Du, Dong Wang, Feng Zhang, Fengzong Lian, Guanghui Xu, Guanwei Zhang, Hai Wang, Haipeng Luo, Han Hu, Huilin Xu, Jiajia Wu, Jianchen Zhu, Jianfeng Yan, Jiaqi Zhu, Jinbao Xue, Jun Xia, Junqiang Zheng, Kai Liu, Kai Zhang, Kai Zheng, Kejiao Li, Keyao Wang, Lan Jiang, Lixin Liu, Lulu Wu, Mengyuan Huang, Peijie Yu, Peiqi Wang, Qian Wang, Qianbiao Xiang, Qibin Liu, Qingfeng Sun, Richard Guo, Ruobing Xie, Saiyong Yang, Shaohua Chen, Shihui Hu, Shuai Li, Shuaipeng Li, Shuang Chen, Suncong Zheng, Tao Yang, Tian Zhang, TingHao Yu, Weidong Han, Weijie Liu, Weijin Zhou, Weikang Wang, Wesleye Chen, Xiao Feng, Xiaoqin Ren, Xingwu Sun, Xiong Kuang, Xuemeng Huang, Xun Cao, Yanfeng Chen, Yang Du, Yang Zhen, Yaping Deng, Yi Shen, Yigeng Hong, Yiqi Chen, Yiqing Huang, Yuchi Deng, Yue Mao, Yulong Wang, Yuyuan Zeng, Zenan Xu, Zhanhui Kang, Zhenxiang Yan, Zheng Fang, Zhichao Hu, Zhongzhi Chen, Zhuoyu Li, Zongwei Li, Alex Yan, Ande Liang, Baitong Liu, Beiping Pan, Bin Xing, Binghong Wu, Bingxin Qu, Bolin Ni, Boyu Wu, Chen Li, Cheng Jiang, Cheng Zhang, Chengjun Liu, Chengxu Yang, Chiyu Wang, Chong Zha, Daisy Yi, Di Wang, Fanyang Lu, Fei Chen, Feifei Liu, Feng Zheng, Guanghua Yu, Guiyang Li, Guohua Wang, Haisheng Lin, Han Liu, Han Wang, Hao Fei, Hao Lu, Haoqing Jiang, Haoran Sun, Haotian Zhu, Huangjin Dai, Huankui Chen, Huawen Feng, Huihui Cai, Huxin Peng, Jackson Lv, Jiacheng Shi, Jiahao Bu, Jianbo Li, Jianglu Hu, Jiangtao Guan, Jianing Xu, Jianwei Cai, Jiarong Zhang, Jiawei Song, Jie Jiang, Jie Liu, Jieneng Yang, Jihong Zhang, Jin lv, Jing Zhao, Jinjian Li, JinXing Liu, Jun Zhao, Juntao Guo, Kai Wang, Kan Wu, Lei Fu, Lei He, Lei Wang, Li Liu, Liang Dong, Liya Zhan, Long Cheng, Long Xu, Mao Zheng, Meng Liu, Mengkang Hu, Nanli Chen, Peirui Chen, Peng He, Pengju Pan, Pengzhi Wei, Qi Yang, Qi Yi, Roberts Wang, Rongpeng Chen, Rui Sun, Rui Yang, Ruibin Chen, Ruixu Zhou, Shaofeng Zhang, Sheng Zhang, Shihao Xu, Shuaishuai Chang, Shulin Liu, Siqi Wang, Songjia Feng, Songling Yuan, Tao Zhang, Tianjiao Lang, Tongkai Li, Wei Deng, Wei Li, Weichao Wang, Weigang Zhang, Weixuan Sun, Wen Ouyang, Wenxiang Jiao, Wenzhi Sun, Wenzhuo Jia, Xiang Zhang, Xiangyu He, Xianshun Ren, Xiaoying Zhu, Xiaolong Guo, Xiaoxue Li, Xiaoyu Ma, Xican Lu, Xinhua Feng, Xinting Huang, Xinyu Guan, Xirui Li, Xu Zhang, Xudong Gao, Xun Luo, Xuxiang Qi, Yangkun Chen, Yangyu Tao, Yanling Xiao, Yantao Mai, Yanze Chen, Yao Ding, Yeting Yang, YiFan Song, Yifan Yang, Yijiao Zhu, Yinhe Wu, Yixian Liu, Yong Yang, Yuanjun Cai, Yuanlin Tu, Yue Zhang, Yufei Huang, YuHang Zhou, Yuhao Jiang, Yuhong Liu, Yuhui Hu, YuJin Lin, Yun Yang, Yunhao Wang, Yusong Zhang, Zekun Wu, Zelong Zhang, Zhan Yu, Zhaoliang Yang, Zhe Zhao, Zheng Li, Zhenyu Huang, Zhiguang Liu, Zhiqing Kui, Zhiyin Zeng, Zhiyuan Xiong, Zhuo Han, Zifan Wu, Zigang Geng, Zilong Zhao, Ziyan Tang, Ziyuan Zhu, Zonglei Zhu, Zhijiang Xu
As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model.
no code implementations • 31 Mar 2025 • Yixing Li, Ruobing Xie, Zhen Yang, Xingwu Sun, Shuaipeng Li, Weidong Han, Zhanhui Kang, Yu Cheng, Chengzhong Xu, Di Wang, Jie Jiang
Transformers are the cornerstone of modern large language models, but their quadratic computational complexity limits efficiency in long-sequence processing.
no code implementations • 5 Jan 2025 • Xingwu Sun, Shuaipeng Li, Ruobing Xie, Weidong Han, Kan Wu, Zhen Yang, Yixing Li, An Wang, Shuai Li, Jinbao Xue, Yu Cheng, Yangyu Tao, Zhanhui Kang, Chengzhong Xu, Di Wang, Jie Jiang
Low-precision training is considered an effective strategy for reducing both training and downstream inference costs.
1 code implementation • 11 Nov 2024 • Ang Lv, Ruobing Xie, Shuaipeng Li, Jiayi Liao, Xingwu Sun, Zhanhui Kang, Di Wang, Rui Yan
We propose a novel attention mechanism, named Cog Attention, that enables attention weights to be negative for enhanced expressiveness, which stems from two key factors: (1) Cog Attention enhances parameter flexibility.
3 code implementations • 4 Nov 2024 • Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruobing Xie, Jiaqi Zhu, Kai Zhang, Shuaipeng Li, Zhen Yang, Jonny Han, Xiaobo Shu, Jiahao Bu, Zhongzhi Chen, Xuemeng Huang, Fengzong Lian, Saiyong Yang, Jianfeng Yan, Yuyuan Zeng, Xiaoqin Ren, Chao Yu, Lulu Wu, Yue Mao, Jun Xia, Tao Yang, Suncong Zheng, Kan Wu, Dian Jiao, Jinbao Xue, Xipeng Zhang, Decheng Wu, Kai Liu, Dengpeng Wu, Guanghui Xu, Shaohua Chen, Shuang Chen, Xiao Feng, Yigeng Hong, Junqiang Zheng, Chengcheng Xu, Zongwei Li, Xiong Kuang, Jianglu Hu, Yiqi Chen, Yuchi Deng, Guiyang Li, Ao Liu, Chenchen Zhang, Shihui Hu, Zilong Zhao, Zifan Wu, Yao Ding, Weichao Wang, Han Liu, Roberts Wang, Hao Fei, Peijie Yu, Ze Zhao, Xun Cao, Hai Wang, Fusheng Xiang, Mengyuan Huang, Zhiyuan Xiong, Bin Hu, Xuebin Hou, Lei Jiang, Jianqiang Ma, Jiajia Wu, Yaping Deng, Yi Shen, Qian Wang, Weijie Liu, Jie Liu, Meng Chen, Liang Dong, Weiwen Jia, Hu Chen, Feifei Liu, Rui Yuan, Huilin Xu, Zhenxiang Yan, Tengfei Cao, Zhichao Hu, Xinhua Feng, Dong Du, TingHao Yu, Yangyu Tao, Feng Zhang, Jianchen Zhu, Chengzhong Xu, Xirui Li, Chong Zha, Wen Ouyang, Yinben Xia, Xiang Li, Zekun He, Rongpeng Chen, Jiawei Song, Ruibin Chen, Fan Jiang, Chongqing Zhao, Bo wang, Hao Gong, Rong Gan, Winston Hu, Zhanhui Kang, Yong Yang, Yuhong Liu, Di Wang, Jie Jiang
In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens.
no code implementations • 20 Aug 2024 • An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, J. N. Han, Zhanhui Kang, Di Wang, Naoaki Okazaki, Cheng-Zhong Xu
To address the imbalance in expert activation, we propose a novel training objective that encourages the frequent activation of smaller experts, enhancing computational efficiency and parameter utilization.
no code implementations • 16 Jul 2024 • Pinxue Zhao, Hailin Zhang, Fangcheng Fu, Xiaonan Nie, Qibin Liu, Fang Yang, Yuanbo Peng, Dian Jiao, Shuaipeng Li, Jinbao Xue, Yangyu Tao, Bin Cui
By leveraging fine-grained activation memory management, MEMO facilitates efficient training of 7B LLM with 1 million sequence length on just 8 A800 GPUs, achieving an MFU of 52. 30%.
no code implementations • 23 May 2024 • Shuaipeng Li, Penghao Zhao, Hailin Zhang, Xingwu Sun, Hao Wu, Dian Jiao, Weiyan Wang, Chengjun Liu, Zheng Fang, Jinbao Xue, Yangyu Tao, Bin Cui, Di Wang
First, we raise the scaling law between batch sizes and optimal learning rates in the sign of gradient case, in which we prove that the optimal learning rate first rises and then falls as the batch size increases.
1 code implementation • 22 Nov 2019 • Fangyu Liu, Rongtian Ye, Xun Wang, Shuaipeng Li
The hubness problem widely exists in high-dimensional embedding space and is a fundamental source of error for cross-modal matching tasks.
no code implementations • ICCV 2017 • Fangyu Liu, Shuaipeng Li, Liqiang Zhang, Chenghu Zhou, Rongtian Ye, Yuebin Wang, Jiwen Lu
Our method provides an automatic process that maps the raw data to the classification results.