no code implementations • NAACL 2019 • Shudong Hao, Michael J. Paul
We introduce a theoretical analysis of crosslingual transfer in probabilistic topic models.
no code implementations • CL 2020 • Shudong Hao, Michael J. Paul
Probabilistic topic modeling is a popular choice as the first step of crosslingual tasks to enable knowledge transfer and extract multilingual features.
no code implementations • COLING 2018 • Shudong Hao, Michael J. Paul
Multilingual topic models enable crosslingual tasks by extracting consistent topics from multilingual corpora.
no code implementations • 11 Jun 2018 • Shudong Hao, Michael J. Paul
Multilingual topic models enable crosslingual tasks by extracting consistent topics from multilingual corpora.
no code implementations • NAACL 2018 • Shudong Hao, Jordan Boyd-Graber, Michael J. Paul
Multilingual topic models enable document analysis across languages through coherent multilingual summaries of the data.
no code implementations • IJCNLP 2017 • Benjamin Van Durme, Tom Lippincott, Kevin Duh, Deana Burchfield, Adam Poliak, Cash Costello, Tim Finin, Scott Miller, James Mayfield, Philipp Koehn, Craig Harman, Dawn Lawrie, Ch May, ler, Max Thomas, Annabelle Carrell, Julianne Chaloux, Tongfei Chen, Alex Comerford, Mark Dredze, Benjamin Glass, Shudong Hao, Patrick Martin, Pushpendre Rastogi, Rashmi Sankepally, Travis Wolfe, Ying-Ying Tran, Ted Zhang
It combines a multitude of analytics together with a flexible environment for customizing the workflow for different users.