1 code implementation • 18 Oct 2022 • Zhoujin Tian, Chaozhuo Li, Shuo Ren, Zhiqiang Zuo, Zengxuan Wen, Xinyue Hu, Xiao Han, Haizhen Huang, Denvy Deng, Qi Zhang, Xing Xie
Bilingual lexicon induction induces the word translations by aligning independently trained word embeddings in two languages.
1 code implementation • 30 Sep 2022 • Ziqiang Zhang, Sanyuan Chen, Long Zhou, Yu Wu, Shuo Ren, Shujie Liu, Zhuoyuan Yao, Xun Gong, LiRong Dai, Jinyu Li, Furu Wei
In this paper, we propose a cross-modal Speech and Language Model (SpeechLM) to explicitly align speech and text pre-training with a pre-defined unified discrete representation.
1 code implementation • 24 Feb 2022 • Qinghua Zhao, Shuai Ma, Shuo Ren
On the contrary, the second task predicts the overall sentiment polarity given the sentiment polarity of the word as prior knowledge.
7 code implementations • 26 Oct 2021 • Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Xiangzhan Yu, Furu Wei
Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks.
Ranked #1 on Speech Recognition on CALLHOME En
4 code implementations • ACL 2022 • Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei
Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +8
no code implementations • ACL 2021 • Shuo Ren, Long Zhou, Shujie Liu, Furu Wei, Ming Zhou, Shuai Ma
While pre-training techniques are working very well in natural language processing, how to pre-train a decoder and effectively use it for neural machine translation (NMT) still remains a tricky issue.
4 code implementations • 9 Feb 2021 • Shuai Lu, Daya Guo, Shuo Ren, JunJie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, Shujie Liu
Benchmark datasets have a significant impact on accelerating research in programming language tasks.
Ranked #1 on Cloze Test on CodeXGLUE - CT-maxmin
2 code implementations • 22 Sep 2020 • Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio Blanco, Shuai Ma
Evaluation metrics play a vital role in the growth of an area as it defines the standard of distinguishing between good and bad models.
1 code implementation • ICLR 2021 • Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, Ming Zhou
Instead of taking syntactic-level structure of code like abstract syntax tree (AST), we use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
Ranked #3 on Type prediction on ManyTypes4TypeScript
no code implementations • ACL 2020 • Shuo Ren, Shujie Liu, Ming Zhou, Shuai Ma
To deal with those issues, in this paper, we propose a novel graph-based paradigm to induce bilingual lexicons in a coarse-to-fine way.
Bilingual Lexicon Induction Cross-Lingual Word Embeddings +2
1 code implementation • ACL 2020 • Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, Shuai Ma
The commonly used framework for unsupervised machine translation builds initial translation models of both translation directions, and then performs iterative back-translation to jointly boost their translation performance.
1 code implementation • 6 Dec 2019 • Chengyi Wang, Yu Wu, Yujiao Du, Jinyu Li, Shujie Liu, Liang Lu, Shuo Ren, Guoli Ye, Sheng Zhao, Ming Zhou
Attention-based encoder-decoder model has achieved impressive results for both automatic speech recognition (ASR) and text-to-speech (TTS) tasks.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +3
no code implementations • IJCNLP 2019 • Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, Shuai Ma
Pre-training has proven to be effective in unsupervised machine translation due to its ability to model deep context information in cross-lingual scenarios.
1 code implementation • 14 Jan 2019 • Shuo Ren, Zhirui Zhang, Shujie Liu, Ming Zhou, Shuai Ma
To address this issue, we introduce phrase based Statistic Machine Translation (SMT) models which are robust to noisy data, as posterior regularizations to guide the training of unsupervised NMT models in the iterative back-translation process.
no code implementations • 23 Aug 2018 • Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang, Peng Chen, Mu Li, Ming Zhou, Enhong Chen
Language style transferring rephrases text with specific stylistic attributes while preserving the original attribute-independent content.
Ranked #3 on Unsupervised Text Style Transfer on GYAFC
no code implementations • NAACL 2018 • Wenhu Chen, Guanlin Li, Shuo Ren, Shujie Liu, Zhirui Zhang, Mu Li, Ming Zhou
In order to alleviate data sparsity and overfitting problems in maximum likelihood estimation (MLE) for sequence prediction tasks, we propose the Generative Bridging Network (GBN), in which a novel bridge module is introduced to assist the training of the sequence prediction model (the generator network).
no code implementations • ACL 2018 • Shuo Ren, Wenhu Chen, Shujie Liu, Mu Li, Ming Zhou, Shuai Ma
Neural Machine Translation (NMT) performs poor on the low-resource language pair $(X, Z)$, especially when $Z$ is a rare language.
no code implementations • 28 Jun 2017 • Wenhu Chen, Guanlin Li, Shuo Ren, Shujie Liu, Zhirui Zhang, Mu Li, Ming Zhou
In order to alleviate data sparsity and overfitting problems in maximum likelihood estimation (MLE) for sequence prediction tasks, we propose the Generative Bridging Network (GBN), in which a novel bridge module is introduced to assist the training of the sequence prediction model (the generator network).