no code implementations • 10 Feb 2022 • Maokui He, Xiang Lv, Weilin Zhou, JingJing Yin, Xiaoqi Zhang, Yuxuan Wang, Shutong Niu, Yuhang Cao, Heng Lu, Jun Du, Chin-Hui Lee
We propose two improvements to target-speaker voice activity detection (TS-VAD), the core component in our proposed speaker diarization system that was submitted to the 2022 Multi-Channel Multi-Party Meeting Transcription (M2MeT) challenge.
no code implementations • 19 Mar 2021 • Yuxuan Wang, Maokui He, Shutong Niu, Lei Sun, Tian Gao, Xin Fang, Jia Pan, Jun Du, Chin-Hui Lee
This system description describes our submission system to the Third DIHARD Speech Diarization Challenge.
1 code implementation • 3 Nov 2020 • Hu Hu, Chao-Han Huck Yang, Xianjun Xia, Xue Bai, Xin Tang, Yajian Wang, Shutong Niu, Li Chai, Juanjuan Li, Hongning Zhu, Feng Bao, Yuanjun Zhao, Sabato Marco Siniscalchi, Yannan Wang, Jun Du, Chin-Hui Lee
To improve device robustness, a highly desirable key feature of a competitive data-driven acoustic scene classification (ASC) system, a novel two-stage system based on fully convolutional neural networks (CNNs) is proposed.
Ranked #1 on
Acoustic Scene Classification
on TAU Urban Acoustic Scenes 2019
(using extra training data)
1 code implementation • 16 Jul 2020 • Hu Hu, Chao-Han Huck Yang, Xianjun Xia, Xue Bai, Xin Tang, Yajian Wang, Shutong Niu, Li Chai, Juanjuan Li, Hongning Zhu, Feng Bao, Yuanjun Zhao, Sabato Marco Siniscalchi, Yannan Wang, Jun Du, Chin-Hui Lee
On Task 1b development data set, we achieve an accuracy of 96. 7\% with a model size smaller than 500KB.