Search Results for author: Shuzheng Si

Found 16 papers, 10 papers with code

UltraEdit: Instruction-based Fine-Grained Image Editing at Scale

1 code implementation7 Jul 2024 Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, Baobao Chang

This paper presents UltraEdit, a large-scale (approximately 4 million editing samples), automatically generated dataset for instruction-based image editing.

Diversity

Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation

1 code implementation12 Apr 2024 Haozhe Zhao, Zefan Cai, Shuzheng Si, Liang Chen, Yufeng He, Kaikai An, Baobao Chang

Therefore, we introduce ALSACE to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM, eliminating the need for additional labeled multilingual data.

One-Shot Learning as Instruction Data Prospector for Large Language Models

1 code implementation16 Dec 2023 Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Ling-Hao Chen, Junhao Liu, Tongliang Liu, Fei Huang, Yongbin Li

Contemporary practices in instruction tuning often hinge on enlarging data scaling without a clear strategy for ensuring data quality, inadvertently introducing noise that may compromise model performance.

One-Shot Learning

ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code

1 code implementation16 Nov 2023 Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang, Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao, Arman Cohan, Mark Gerstein

Despite Large Language Models (LLMs) like GPT-4 achieving impressive results in function-level code generation, they struggle with repository-scale code understanding (e. g., coming up with the right arguments for calling routines), requiring a deeper comprehension of complex file interactions.

Code Generation Navigate +1

UniPCM: Universal Pre-trained Conversation Model with Task-aware Automatic Prompt

no code implementations20 Sep 2023 Yucheng Cai, Wentao Ma, Yuchuan Wu, Shuzheng Si, Yuan Shao, Zhijian Ou, Yongbin Li

Using the high-quality prompts generated, we scale the corpus of the pre-trained conversation model to 122 datasets from 15 dialog-related tasks, resulting in Universal Pre-trained Conversation Model (UniPCM), a powerful foundation model for various conversational tasks and different dialog systems.

MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

2 code implementations14 Sep 2023 Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng Wang, Wenjuan Han, Baobao Chang

In this paper, we address the limitation above by 1) introducing vision-language Model with Multi-Modal In-Context Learning(MMICL), a new approach to allow the VLM to deal with multi-modal inputs efficiently; 2) proposing a novel context scheme to augment the in-context learning ability of the VLM; 3) constructing the Multi-modal In-Context Learning (MIC) dataset, designed to enhance the VLM's ability to understand complex multi-modal prompts.

Hallucination In-Context Learning +4

Mining Clues from Incomplete Utterance: A Query-enhanced Network for Incomplete Utterance Rewriting

no code implementations NAACL 2022 Shuzheng Si, Shuang Zeng, Baobao Chang

Then, we adopt a fast and effective edit operation scoring network to model the relation between two tokens.

SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents

1 code implementation NeurIPS 2023 Shuzheng Si, Wentao Ma, Haoyu Gao, Yuchuan Wu, Ting-En Lin, Yinpei Dai, Hangyu Li, Rui Yan, Fei Huang, Yongbin Li

SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language.

Cannot find the paper you are looking for? You can Submit a new open access paper.