no code implementations • 3 Jul 2024 • Arindam Mitra, Luciano del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Codas, Yadong Lu, Wei-Ge Chen, Olga Vrousgos, Corby Rosset, Fillipe Silva, Hamed Khanpour, Yash Lara, Ahmed Awadallah
We focus on using synthetic data for post-training, specifically creating data by powerful models to teach a new skill or behavior to another model, we refer to this setting as Generative Teaching.
no code implementations • 18 Nov 2023 • Arindam Mitra, Luciano del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj Agarwal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, Hamid Palangi, Guoqing Zheng, Corby Rosset, Hamed Khanpour, Ahmed Awadallah
Research on training small LMs has often relied on imitation learning to replicate the output of more capable models.
Ranked #1 on Crass AI on BIG-bench
1 code implementation • 3 Oct 2023 • Canwen Xu, Corby Rosset, Ethan C. Chau, Luciano del Corro, Shweti Mahajan, Julian McAuley, Jennifer Neville, Ahmed Hassan Awadallah, Nikhil Rao
Remarkably, our automatic contrastive post-training further improves the performance of Orca, already a state-of-the-art instruction learning model tuned with GPT-4 outputs, to outperform ChatGPT.
1 code implementation • 23 Jan 2023 • Pratyay Banerjee, Shweti Mahajan, Kushal Arora, Chitta Baral, Oriana Riva
Along with text, these resources include visual content such as UI screenshots and images of application icons referenced in the text.
no code implementations • 23 Jun 2021 • Hayden S. Helm, Marah Abdin, Benjamin D. Pedigo, Shweti Mahajan, Vince Lyzinski, Youngser Park, Amitabh Basu, Piali~Choudhury, Christopher M. White, Weiwei Yang, Carey E. Priebe
In modern ranking problems, different and disparate representations of the items to be ranked are often available.
no code implementations • 16 Mar 2021 • Vivek Kurien George, Vikash Morar, Weiwei Yang, Jonathan Larson, Bryan Tower, Shweti Mahajan, Arkin Gupta, Christopher White, Gabriel A. Silva
The success of state-of-the-art machine learning is essentially all based on different variations of gradient descent algorithms that minimize some version of a cost or loss function.